Semi-supervised learning techniques: k-means clustering in OODB fragmentation
Vertical and horizontal fragmentations are central issues in the design process of distributed object based systems. A good fragmentation scheme followed by an optimal allocation could greatly enhance performance in such systems, as data transfer between distributed sites is minimized. In this paper...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Vertical and horizontal fragmentations are central issues in the design process of distributed object based systems. A good fragmentation scheme followed by an optimal allocation could greatly enhance performance in such systems, as data transfer between distributed sites is minimized. In this paper we present a horizontal fragmentation approach that uses the k-means AI clustering method for partitioning object instances into fragments. Our new method applies to existing databases, where statistics are already present. We model fragmentation input data in a vector space and give different object similarity measures together with their geometrical interpretations. We provide quality and performance evaluations using a partition evaluator function |
---|---|
DOI: | 10.1109/ICCCYB.2004.1437742 |