Target classification based on micro-Doppler signatures
In this paper, we propose a Gabor filtering method to extract localized micro-Doppler signatures represented in the time-frequency domain. The dimensionality of the extracted Gabor features is further reduced by using the principal component analysis (PCA) method. Therefore, a suitable classifier ca...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we propose a Gabor filtering method to extract localized micro-Doppler signatures represented in the time-frequency domain. The dimensionality of the extracted Gabor features is further reduced by using the principal component analysis (PCA) method. Therefore, a suitable classifier can be used for target classification based on their different motion dynamics. In our study, we use simulated radar data. Three different classifiers (Bayes linear, k-nearest neighbor, and support vector machine) are compared and tested. Our experiments show that Gabor features are robust in discriminating micro-Doppler effects of different types of micro-motions, and SVM classifier provides the best performance. |
---|---|
ISSN: | 1097-5659 2375-5318 |
DOI: | 10.1109/RADAR.2005.1435815 |