Tracking non-stationary optimal solution by particle swarm optimizer
In the real world, we have to frequently deal with searching for and tracking an optimal solution in a dynamic environment. This demands that the algorithm not only find the optimal solution but also track the trajectory of the solution in a dynamic environment. Particle swarm optimization (PSO) is...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the real world, we have to frequently deal with searching for and tracking an optimal solution in a dynamic environment. This demands that the algorithm not only find the optimal solution but also track the trajectory of the solution in a dynamic environment. Particle swarm optimization (PSO) is a population-based stochastic optimization technique, which can find an optimal, or near optimal, solution to a numerical and qualitative problem. However, the traditional PSO algorithm lacks the ability to track the optimal solution in a dynamic environment. In this paper, we present a modified PSO algorithm that can be used for tracking a non-stationary optimal solution in a dynamically changing environment. |
---|---|
DOI: | 10.1109/SNPD-SAWN.2005.77 |