Tracking non-stationary optimal solution by particle swarm optimizer

In the real world, we have to frequently deal with searching for and tracking an optimal solution in a dynamic environment. This demands that the algorithm not only find the optimal solution but also track the trajectory of the solution in a dynamic environment. Particle swarm optimization (PSO) is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cui, X., Hardin, C.T., Ragade, R.K., Potok, T.E., Elmaghraby, A.S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the real world, we have to frequently deal with searching for and tracking an optimal solution in a dynamic environment. This demands that the algorithm not only find the optimal solution but also track the trajectory of the solution in a dynamic environment. Particle swarm optimization (PSO) is a population-based stochastic optimization technique, which can find an optimal, or near optimal, solution to a numerical and qualitative problem. However, the traditional PSO algorithm lacks the ability to track the optimal solution in a dynamic environment. In this paper, we present a modified PSO algorithm that can be used for tracking a non-stationary optimal solution in a dynamically changing environment.
DOI:10.1109/SNPD-SAWN.2005.77