Investigations of high-performance GaAs solar cells grown on Ge-Si/sub 1-x/Ge/sub x/-Si substrates

High-performance p/sup +//n GaAs solar cells were grown and processed on compositionally graded Ge-Si/sub 1-x/Ge/sub x/-Si (SiGe) substrates. Total area efficiencies of 18.1% under the AM1.5-G spectrum were measured for 0.0444 cm/sup 2/ solar cells. This high efficiency is attributed to the very hig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2005-06, Vol.52 (6), p.1055-1060
Hauptverfasser: Andre, C.L., Carlin, J.A., Boeckl, J.J., Wilt, D.M., Smith, M.A., Pitera, A.J., Lee, M.L., Fitzgerald, E.A., Ringel, S.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1060
container_issue 6
container_start_page 1055
container_title IEEE transactions on electron devices
container_volume 52
creator Andre, C.L.
Carlin, J.A.
Boeckl, J.J.
Wilt, D.M.
Smith, M.A.
Pitera, A.J.
Lee, M.L.
Fitzgerald, E.A.
Ringel, S.A.
description High-performance p/sup +//n GaAs solar cells were grown and processed on compositionally graded Ge-Si/sub 1-x/Ge/sub x/-Si (SiGe) substrates. Total area efficiencies of 18.1% under the AM1.5-G spectrum were measured for 0.0444 cm/sup 2/ solar cells. This high efficiency is attributed to the very high open-circuit voltages (980 mV (AM0) and 973 mV (AM1.5-G)) that were achieved by the reduction in threading dislocation density enabled by the SiGe buffers, and thus reduced carrier recombination losses. This is the highest independently confirmed efficiency and open-circuit voltage for a GaAs solar cell grown on a Si-based substrate to date. Larger area solar cells were also studied in order to examine the impact of device area on GaAs-on-SiGe solar cell performance; we found that an increase in device area from 0.36 to 4.0 cm/sup 2/ did not degrade the measured performance characteristics for cells processed on identical substrates. Moreover, the device performance uniformity for large area heteroepitaxial cells is consistent with that of homoepitaxial cells; thus, device growth and processing on SiGe substrates did not introduce added performance variations. These results demonstrate that using SiGe interlayers to produce "virtual" Ge substrates may provide a robust method for scaleable integration of high performance III-V photovoltaics devices with large area Si wafers.
doi_str_mv 10.1109/TED.2005.848117
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1433095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1433095</ieee_id><sourcerecordid>28064134</sourcerecordid><originalsourceid>FETCH-LOGICAL-i514-ce260b7c813ce27d854e3c3b2b687d671afbfee9e7095516078fc4cc8807f6a53</originalsourceid><addsrcrecordid>eNotj71PwzAUxC0EEqUwM7B4YnNix58Zq1JCpUoMdI8c96U1SuNip1D-ewJler93Op3uELpnNGOMlvl68ZQVlMrMCMOYvkATJqUmpRLqEk0oZYaU3PBrdJPS-_gqIYoJapb9J6TBb-3gQ59waPHOb3fkALENcW97B7iys4RT6GzEDrou4W0MXz0OPa6AvPk8HRvMyCmv4A9P-SjikdIQ7QDpFl21tktw93-naP28WM9fyOq1Ws5nK-IlE8RBoWijnWF8RL0xUgB3vCkaZfRGaWbbpgUoQdNSSqaoNq0TzhlDdaus5FP0eI49xPBxHDfVe59--9oewjHVhaFKMC5G48PZ6AGgPkS_t_G7ZoLzMZn_ABzPYGs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28064134</pqid></control><display><type>article</type><title>Investigations of high-performance GaAs solar cells grown on Ge-Si/sub 1-x/Ge/sub x/-Si substrates</title><source>IEEE Electronic Library (IEL)</source><creator>Andre, C.L. ; Carlin, J.A. ; Boeckl, J.J. ; Wilt, D.M. ; Smith, M.A. ; Pitera, A.J. ; Lee, M.L. ; Fitzgerald, E.A. ; Ringel, S.A.</creator><creatorcontrib>Andre, C.L. ; Carlin, J.A. ; Boeckl, J.J. ; Wilt, D.M. ; Smith, M.A. ; Pitera, A.J. ; Lee, M.L. ; Fitzgerald, E.A. ; Ringel, S.A.</creatorcontrib><description>High-performance p/sup +//n GaAs solar cells were grown and processed on compositionally graded Ge-Si/sub 1-x/Ge/sub x/-Si (SiGe) substrates. Total area efficiencies of 18.1% under the AM1.5-G spectrum were measured for 0.0444 cm/sup 2/ solar cells. This high efficiency is attributed to the very high open-circuit voltages (980 mV (AM0) and 973 mV (AM1.5-G)) that were achieved by the reduction in threading dislocation density enabled by the SiGe buffers, and thus reduced carrier recombination losses. This is the highest independently confirmed efficiency and open-circuit voltage for a GaAs solar cell grown on a Si-based substrate to date. Larger area solar cells were also studied in order to examine the impact of device area on GaAs-on-SiGe solar cell performance; we found that an increase in device area from 0.36 to 4.0 cm/sup 2/ did not degrade the measured performance characteristics for cells processed on identical substrates. Moreover, the device performance uniformity for large area heteroepitaxial cells is consistent with that of homoepitaxial cells; thus, device growth and processing on SiGe substrates did not introduce added performance variations. These results demonstrate that using SiGe interlayers to produce "virtual" Ge substrates may provide a robust method for scaleable integration of high performance III-V photovoltaics devices with large area Si wafers.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2005.848117</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>IEEE</publisher><subject>Dislocation ; GaAs ; Gallium compounds ; Germanium alloys ; heteroepitaxy ; integration ; lattice-mismatch ; metamorphic ; photovoltaic ; Photovoltaic cells ; Semiconductor epitaxial layers ; Semiconductor growth ; SiGe ; Silicon alloys ; solar cell</subject><ispartof>IEEE transactions on electron devices, 2005-06, Vol.52 (6), p.1055-1060</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1433095$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1433095$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Andre, C.L.</creatorcontrib><creatorcontrib>Carlin, J.A.</creatorcontrib><creatorcontrib>Boeckl, J.J.</creatorcontrib><creatorcontrib>Wilt, D.M.</creatorcontrib><creatorcontrib>Smith, M.A.</creatorcontrib><creatorcontrib>Pitera, A.J.</creatorcontrib><creatorcontrib>Lee, M.L.</creatorcontrib><creatorcontrib>Fitzgerald, E.A.</creatorcontrib><creatorcontrib>Ringel, S.A.</creatorcontrib><title>Investigations of high-performance GaAs solar cells grown on Ge-Si/sub 1-x/Ge/sub x/-Si substrates</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>High-performance p/sup +//n GaAs solar cells were grown and processed on compositionally graded Ge-Si/sub 1-x/Ge/sub x/-Si (SiGe) substrates. Total area efficiencies of 18.1% under the AM1.5-G spectrum were measured for 0.0444 cm/sup 2/ solar cells. This high efficiency is attributed to the very high open-circuit voltages (980 mV (AM0) and 973 mV (AM1.5-G)) that were achieved by the reduction in threading dislocation density enabled by the SiGe buffers, and thus reduced carrier recombination losses. This is the highest independently confirmed efficiency and open-circuit voltage for a GaAs solar cell grown on a Si-based substrate to date. Larger area solar cells were also studied in order to examine the impact of device area on GaAs-on-SiGe solar cell performance; we found that an increase in device area from 0.36 to 4.0 cm/sup 2/ did not degrade the measured performance characteristics for cells processed on identical substrates. Moreover, the device performance uniformity for large area heteroepitaxial cells is consistent with that of homoepitaxial cells; thus, device growth and processing on SiGe substrates did not introduce added performance variations. These results demonstrate that using SiGe interlayers to produce "virtual" Ge substrates may provide a robust method for scaleable integration of high performance III-V photovoltaics devices with large area Si wafers.</description><subject>Dislocation</subject><subject>GaAs</subject><subject>Gallium compounds</subject><subject>Germanium alloys</subject><subject>heteroepitaxy</subject><subject>integration</subject><subject>lattice-mismatch</subject><subject>metamorphic</subject><subject>photovoltaic</subject><subject>Photovoltaic cells</subject><subject>Semiconductor epitaxial layers</subject><subject>Semiconductor growth</subject><subject>SiGe</subject><subject>Silicon alloys</subject><subject>solar cell</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotj71PwzAUxC0EEqUwM7B4YnNix58Zq1JCpUoMdI8c96U1SuNip1D-ewJler93Op3uELpnNGOMlvl68ZQVlMrMCMOYvkATJqUmpRLqEk0oZYaU3PBrdJPS-_gqIYoJapb9J6TBb-3gQ59waPHOb3fkALENcW97B7iys4RT6GzEDrou4W0MXz0OPa6AvPk8HRvMyCmv4A9P-SjikdIQ7QDpFl21tktw93-naP28WM9fyOq1Ws5nK-IlE8RBoWijnWF8RL0xUgB3vCkaZfRGaWbbpgUoQdNSSqaoNq0TzhlDdaus5FP0eI49xPBxHDfVe59--9oewjHVhaFKMC5G48PZ6AGgPkS_t_G7ZoLzMZn_ABzPYGs</recordid><startdate>200506</startdate><enddate>200506</enddate><creator>Andre, C.L.</creator><creator>Carlin, J.A.</creator><creator>Boeckl, J.J.</creator><creator>Wilt, D.M.</creator><creator>Smith, M.A.</creator><creator>Pitera, A.J.</creator><creator>Lee, M.L.</creator><creator>Fitzgerald, E.A.</creator><creator>Ringel, S.A.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>200506</creationdate><title>Investigations of high-performance GaAs solar cells grown on Ge-Si/sub 1-x/Ge/sub x/-Si substrates</title><author>Andre, C.L. ; Carlin, J.A. ; Boeckl, J.J. ; Wilt, D.M. ; Smith, M.A. ; Pitera, A.J. ; Lee, M.L. ; Fitzgerald, E.A. ; Ringel, S.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i514-ce260b7c813ce27d854e3c3b2b687d671afbfee9e7095516078fc4cc8807f6a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Dislocation</topic><topic>GaAs</topic><topic>Gallium compounds</topic><topic>Germanium alloys</topic><topic>heteroepitaxy</topic><topic>integration</topic><topic>lattice-mismatch</topic><topic>metamorphic</topic><topic>photovoltaic</topic><topic>Photovoltaic cells</topic><topic>Semiconductor epitaxial layers</topic><topic>Semiconductor growth</topic><topic>SiGe</topic><topic>Silicon alloys</topic><topic>solar cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andre, C.L.</creatorcontrib><creatorcontrib>Carlin, J.A.</creatorcontrib><creatorcontrib>Boeckl, J.J.</creatorcontrib><creatorcontrib>Wilt, D.M.</creatorcontrib><creatorcontrib>Smith, M.A.</creatorcontrib><creatorcontrib>Pitera, A.J.</creatorcontrib><creatorcontrib>Lee, M.L.</creatorcontrib><creatorcontrib>Fitzgerald, E.A.</creatorcontrib><creatorcontrib>Ringel, S.A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Andre, C.L.</au><au>Carlin, J.A.</au><au>Boeckl, J.J.</au><au>Wilt, D.M.</au><au>Smith, M.A.</au><au>Pitera, A.J.</au><au>Lee, M.L.</au><au>Fitzgerald, E.A.</au><au>Ringel, S.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigations of high-performance GaAs solar cells grown on Ge-Si/sub 1-x/Ge/sub x/-Si substrates</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2005-06</date><risdate>2005</risdate><volume>52</volume><issue>6</issue><spage>1055</spage><epage>1060</epage><pages>1055-1060</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>High-performance p/sup +//n GaAs solar cells were grown and processed on compositionally graded Ge-Si/sub 1-x/Ge/sub x/-Si (SiGe) substrates. Total area efficiencies of 18.1% under the AM1.5-G spectrum were measured for 0.0444 cm/sup 2/ solar cells. This high efficiency is attributed to the very high open-circuit voltages (980 mV (AM0) and 973 mV (AM1.5-G)) that were achieved by the reduction in threading dislocation density enabled by the SiGe buffers, and thus reduced carrier recombination losses. This is the highest independently confirmed efficiency and open-circuit voltage for a GaAs solar cell grown on a Si-based substrate to date. Larger area solar cells were also studied in order to examine the impact of device area on GaAs-on-SiGe solar cell performance; we found that an increase in device area from 0.36 to 4.0 cm/sup 2/ did not degrade the measured performance characteristics for cells processed on identical substrates. Moreover, the device performance uniformity for large area heteroepitaxial cells is consistent with that of homoepitaxial cells; thus, device growth and processing on SiGe substrates did not introduce added performance variations. These results demonstrate that using SiGe interlayers to produce "virtual" Ge substrates may provide a robust method for scaleable integration of high performance III-V photovoltaics devices with large area Si wafers.</abstract><pub>IEEE</pub><doi>10.1109/TED.2005.848117</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2005-06, Vol.52 (6), p.1055-1060
issn 0018-9383
1557-9646
language eng
recordid cdi_ieee_primary_1433095
source IEEE Electronic Library (IEL)
subjects Dislocation
GaAs
Gallium compounds
Germanium alloys
heteroepitaxy
integration
lattice-mismatch
metamorphic
photovoltaic
Photovoltaic cells
Semiconductor epitaxial layers
Semiconductor growth
SiGe
Silicon alloys
solar cell
title Investigations of high-performance GaAs solar cells grown on Ge-Si/sub 1-x/Ge/sub x/-Si substrates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T01%3A35%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigations%20of%20high-performance%20GaAs%20solar%20cells%20grown%20on%20Ge-Si/sub%201-x/Ge/sub%20x/-Si%20substrates&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Andre,%20C.L.&rft.date=2005-06&rft.volume=52&rft.issue=6&rft.spage=1055&rft.epage=1060&rft.pages=1055-1060&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2005.848117&rft_dat=%3Cproquest_RIE%3E28064134%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28064134&rft_id=info:pmid/&rft_ieee_id=1433095&rfr_iscdi=true