Investigations of high-performance GaAs solar cells grown on Ge-Si/sub 1-x/Ge/sub x/-Si substrates
High-performance p/sup +//n GaAs solar cells were grown and processed on compositionally graded Ge-Si/sub 1-x/Ge/sub x/-Si (SiGe) substrates. Total area efficiencies of 18.1% under the AM1.5-G spectrum were measured for 0.0444 cm/sup 2/ solar cells. This high efficiency is attributed to the very hig...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2005-06, Vol.52 (6), p.1055-1060 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | High-performance p/sup +//n GaAs solar cells were grown and processed on compositionally graded Ge-Si/sub 1-x/Ge/sub x/-Si (SiGe) substrates. Total area efficiencies of 18.1% under the AM1.5-G spectrum were measured for 0.0444 cm/sup 2/ solar cells. This high efficiency is attributed to the very high open-circuit voltages (980 mV (AM0) and 973 mV (AM1.5-G)) that were achieved by the reduction in threading dislocation density enabled by the SiGe buffers, and thus reduced carrier recombination losses. This is the highest independently confirmed efficiency and open-circuit voltage for a GaAs solar cell grown on a Si-based substrate to date. Larger area solar cells were also studied in order to examine the impact of device area on GaAs-on-SiGe solar cell performance; we found that an increase in device area from 0.36 to 4.0 cm/sup 2/ did not degrade the measured performance characteristics for cells processed on identical substrates. Moreover, the device performance uniformity for large area heteroepitaxial cells is consistent with that of homoepitaxial cells; thus, device growth and processing on SiGe substrates did not introduce added performance variations. These results demonstrate that using SiGe interlayers to produce "virtual" Ge substrates may provide a robust method for scaleable integration of high performance III-V photovoltaics devices with large area Si wafers. |
---|---|
ISSN: | 0018-9383 1557-9646 |
DOI: | 10.1109/TED.2005.848117 |