Uncertainty in the dynamics of conservative maps

This paper studies the effect of uncertainty, using random perturbations, on area preserving maps of R/sub 2/ to itself. We focus on the standard map and a discrete Duffing oscillator as specific examples. We relate the level of uncertainty to the large-scale features in the dynamics in a precise wa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Junge, O., Marsden, J.E., Mezic, I.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2230 Vol.2
container_issue
container_start_page 2225
container_title
container_volume 2
creator Junge, O.
Marsden, J.E.
Mezic, I.
description This paper studies the effect of uncertainty, using random perturbations, on area preserving maps of R/sub 2/ to itself. We focus on the standard map and a discrete Duffing oscillator as specific examples. We relate the level of uncertainty to the large-scale features in the dynamics in a precise way. We also study the effect of such perturbations on bifurcations in such maps. The main tools used for these investigations are a study of the eigenfunction and eigenvalue structure of the associated Perron-Frobenius operator along with set oriented methods for the numerical computations.
doi_str_mv 10.1109/CDC.2004.1430379
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_6IE</sourceid><recordid>TN_cdi_ieee_primary_1430379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1430379</ieee_id><sourcerecordid>17498362</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-7a74624f9fc7b0bc4f5f75bb6c46a7a2ae6c72985140c41f750476103c9428bd3</originalsourceid><addsrcrecordid>eNpFkDtrwzAUhQVtoWmavdBFS0e7V9K1HmNxnxDo0szhWpGoSuwYywT872twoXDgDN_HGQ5jdwJKIcA91s91KQGwFKhAGXfBNs5YmKOstlJeshUIJwophb5mNzn_AIAFrVcMdp0Pw0ipGyeeOj5-B36YOmqTz_wUuT91OQxnGtM58Jb6fMuuIh1z2Pz1mu1eX77q92L7-fZRP20LLx2OhSGDWmJ00ZsGGo-xiqZqGu1RkyFJQXsjna0EgkcxM0CjBSjvUNrmoNbsYdntKXs6xoE6n_K-H1JLw7QXBp1VWs7e_eKlEMI_Xo5Qv_fvT7w</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Uncertainty in the dynamics of conservative maps</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Junge, O. ; Marsden, J.E. ; Mezic, I.</creator><creatorcontrib>Junge, O. ; Marsden, J.E. ; Mezic, I.</creatorcontrib><description>This paper studies the effect of uncertainty, using random perturbations, on area preserving maps of R/sub 2/ to itself. We focus on the standard map and a discrete Duffing oscillator as specific examples. We relate the level of uncertainty to the large-scale features in the dynamics in a precise way. We also study the effect of such perturbations on bifurcations in such maps. The main tools used for these investigations are a study of the eigenfunction and eigenvalue structure of the associated Perron-Frobenius operator along with set oriented methods for the numerical computations.</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 9780780386822</identifier><identifier>ISBN: 0780386825</identifier><identifier>DOI: 10.1109/CDC.2004.1430379</identifier><language>eng</language><publisher>Piscataway NJ: IEEE</publisher><subject>Applied sciences ; Bifurcation ; Centralized control ; Computer science; control theory; systems ; Control systems ; Control theory. Systems ; Eigenvalues and eigenfunctions ; Exact sciences and technology ; Large-scale systems ; Mathematics ; Mechanical systems ; Oscillators ; Stochastic processes ; Uncertainty</subject><ispartof>2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601), 2004, Vol.2, p.2225-2230 Vol.2</ispartof><rights>2006 INIST-CNRS</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-7a74624f9fc7b0bc4f5f75bb6c46a7a2ae6c72985140c41f750476103c9428bd3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1430379$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,782,786,791,792,2062,4054,4055,27934,54929</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1430379$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17498362$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Junge, O.</creatorcontrib><creatorcontrib>Marsden, J.E.</creatorcontrib><creatorcontrib>Mezic, I.</creatorcontrib><title>Uncertainty in the dynamics of conservative maps</title><title>2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601)</title><addtitle>CDC</addtitle><description>This paper studies the effect of uncertainty, using random perturbations, on area preserving maps of R/sub 2/ to itself. We focus on the standard map and a discrete Duffing oscillator as specific examples. We relate the level of uncertainty to the large-scale features in the dynamics in a precise way. We also study the effect of such perturbations on bifurcations in such maps. The main tools used for these investigations are a study of the eigenfunction and eigenvalue structure of the associated Perron-Frobenius operator along with set oriented methods for the numerical computations.</description><subject>Applied sciences</subject><subject>Bifurcation</subject><subject>Centralized control</subject><subject>Computer science; control theory; systems</subject><subject>Control systems</subject><subject>Control theory. Systems</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Exact sciences and technology</subject><subject>Large-scale systems</subject><subject>Mathematics</subject><subject>Mechanical systems</subject><subject>Oscillators</subject><subject>Stochastic processes</subject><subject>Uncertainty</subject><issn>0191-2216</issn><isbn>9780780386822</isbn><isbn>0780386825</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkDtrwzAUhQVtoWmavdBFS0e7V9K1HmNxnxDo0szhWpGoSuwYywT872twoXDgDN_HGQ5jdwJKIcA91s91KQGwFKhAGXfBNs5YmKOstlJeshUIJwophb5mNzn_AIAFrVcMdp0Pw0ipGyeeOj5-B36YOmqTz_wUuT91OQxnGtM58Jb6fMuuIh1z2Pz1mu1eX77q92L7-fZRP20LLx2OhSGDWmJ00ZsGGo-xiqZqGu1RkyFJQXsjna0EgkcxM0CjBSjvUNrmoNbsYdntKXs6xoE6n_K-H1JLw7QXBp1VWs7e_eKlEMI_Xo5Qv_fvT7w</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Junge, O.</creator><creator>Marsden, J.E.</creator><creator>Mezic, I.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>Uncertainty in the dynamics of conservative maps</title><author>Junge, O. ; Marsden, J.E. ; Mezic, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-7a74624f9fc7b0bc4f5f75bb6c46a7a2ae6c72985140c41f750476103c9428bd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Bifurcation</topic><topic>Centralized control</topic><topic>Computer science; control theory; systems</topic><topic>Control systems</topic><topic>Control theory. Systems</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Exact sciences and technology</topic><topic>Large-scale systems</topic><topic>Mathematics</topic><topic>Mechanical systems</topic><topic>Oscillators</topic><topic>Stochastic processes</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Junge, O.</creatorcontrib><creatorcontrib>Marsden, J.E.</creatorcontrib><creatorcontrib>Mezic, I.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Junge, O.</au><au>Marsden, J.E.</au><au>Mezic, I.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Uncertainty in the dynamics of conservative maps</atitle><btitle>2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601)</btitle><stitle>CDC</stitle><date>2004</date><risdate>2004</risdate><volume>2</volume><spage>2225</spage><epage>2230 Vol.2</epage><pages>2225-2230 Vol.2</pages><issn>0191-2216</issn><isbn>9780780386822</isbn><isbn>0780386825</isbn><abstract>This paper studies the effect of uncertainty, using random perturbations, on area preserving maps of R/sub 2/ to itself. We focus on the standard map and a discrete Duffing oscillator as specific examples. We relate the level of uncertainty to the large-scale features in the dynamics in a precise way. We also study the effect of such perturbations on bifurcations in such maps. The main tools used for these investigations are a study of the eigenfunction and eigenvalue structure of the associated Perron-Frobenius operator along with set oriented methods for the numerical computations.</abstract><cop>Piscataway NJ</cop><pub>IEEE</pub><doi>10.1109/CDC.2004.1430379</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0191-2216
ispartof 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601), 2004, Vol.2, p.2225-2230 Vol.2
issn 0191-2216
language eng
recordid cdi_ieee_primary_1430379
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Applied sciences
Bifurcation
Centralized control
Computer science
control theory
systems
Control systems
Control theory. Systems
Eigenvalues and eigenfunctions
Exact sciences and technology
Large-scale systems
Mathematics
Mechanical systems
Oscillators
Stochastic processes
Uncertainty
title Uncertainty in the dynamics of conservative maps
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T00%3A34%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Uncertainty%20in%20the%20dynamics%20of%20conservative%20maps&rft.btitle=2004%2043rd%20IEEE%20Conference%20on%20Decision%20and%20Control%20(CDC)%20(IEEE%20Cat.%20No.04CH37601)&rft.au=Junge,%20O.&rft.date=2004&rft.volume=2&rft.spage=2225&rft.epage=2230%20Vol.2&rft.pages=2225-2230%20Vol.2&rft.issn=0191-2216&rft.isbn=9780780386822&rft.isbn_list=0780386825&rft_id=info:doi/10.1109/CDC.2004.1430379&rft_dat=%3Cpascalfrancis_6IE%3E17498362%3C/pascalfrancis_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1430379&rfr_iscdi=true