Uncertainty in the dynamics of conservative maps
This paper studies the effect of uncertainty, using random perturbations, on area preserving maps of R/sub 2/ to itself. We focus on the standard map and a discrete Duffing oscillator as specific examples. We relate the level of uncertainty to the large-scale features in the dynamics in a precise wa...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2230 Vol.2 |
---|---|
container_issue | |
container_start_page | 2225 |
container_title | |
container_volume | 2 |
creator | Junge, O. Marsden, J.E. Mezic, I. |
description | This paper studies the effect of uncertainty, using random perturbations, on area preserving maps of R/sub 2/ to itself. We focus on the standard map and a discrete Duffing oscillator as specific examples. We relate the level of uncertainty to the large-scale features in the dynamics in a precise way. We also study the effect of such perturbations on bifurcations in such maps. The main tools used for these investigations are a study of the eigenfunction and eigenvalue structure of the associated Perron-Frobenius operator along with set oriented methods for the numerical computations. |
doi_str_mv | 10.1109/CDC.2004.1430379 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_6IE</sourceid><recordid>TN_cdi_ieee_primary_1430379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1430379</ieee_id><sourcerecordid>17498362</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-7a74624f9fc7b0bc4f5f75bb6c46a7a2ae6c72985140c41f750476103c9428bd3</originalsourceid><addsrcrecordid>eNpFkDtrwzAUhQVtoWmavdBFS0e7V9K1HmNxnxDo0szhWpGoSuwYywT872twoXDgDN_HGQ5jdwJKIcA91s91KQGwFKhAGXfBNs5YmKOstlJeshUIJwophb5mNzn_AIAFrVcMdp0Pw0ipGyeeOj5-B36YOmqTz_wUuT91OQxnGtM58Jb6fMuuIh1z2Pz1mu1eX77q92L7-fZRP20LLx2OhSGDWmJ00ZsGGo-xiqZqGu1RkyFJQXsjna0EgkcxM0CjBSjvUNrmoNbsYdntKXs6xoE6n_K-H1JLw7QXBp1VWs7e_eKlEMI_Xo5Qv_fvT7w</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Uncertainty in the dynamics of conservative maps</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Junge, O. ; Marsden, J.E. ; Mezic, I.</creator><creatorcontrib>Junge, O. ; Marsden, J.E. ; Mezic, I.</creatorcontrib><description>This paper studies the effect of uncertainty, using random perturbations, on area preserving maps of R/sub 2/ to itself. We focus on the standard map and a discrete Duffing oscillator as specific examples. We relate the level of uncertainty to the large-scale features in the dynamics in a precise way. We also study the effect of such perturbations on bifurcations in such maps. The main tools used for these investigations are a study of the eigenfunction and eigenvalue structure of the associated Perron-Frobenius operator along with set oriented methods for the numerical computations.</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 9780780386822</identifier><identifier>ISBN: 0780386825</identifier><identifier>DOI: 10.1109/CDC.2004.1430379</identifier><language>eng</language><publisher>Piscataway NJ: IEEE</publisher><subject>Applied sciences ; Bifurcation ; Centralized control ; Computer science; control theory; systems ; Control systems ; Control theory. Systems ; Eigenvalues and eigenfunctions ; Exact sciences and technology ; Large-scale systems ; Mathematics ; Mechanical systems ; Oscillators ; Stochastic processes ; Uncertainty</subject><ispartof>2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601), 2004, Vol.2, p.2225-2230 Vol.2</ispartof><rights>2006 INIST-CNRS</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-7a74624f9fc7b0bc4f5f75bb6c46a7a2ae6c72985140c41f750476103c9428bd3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1430379$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,782,786,791,792,2062,4054,4055,27934,54929</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1430379$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17498362$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Junge, O.</creatorcontrib><creatorcontrib>Marsden, J.E.</creatorcontrib><creatorcontrib>Mezic, I.</creatorcontrib><title>Uncertainty in the dynamics of conservative maps</title><title>2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601)</title><addtitle>CDC</addtitle><description>This paper studies the effect of uncertainty, using random perturbations, on area preserving maps of R/sub 2/ to itself. We focus on the standard map and a discrete Duffing oscillator as specific examples. We relate the level of uncertainty to the large-scale features in the dynamics in a precise way. We also study the effect of such perturbations on bifurcations in such maps. The main tools used for these investigations are a study of the eigenfunction and eigenvalue structure of the associated Perron-Frobenius operator along with set oriented methods for the numerical computations.</description><subject>Applied sciences</subject><subject>Bifurcation</subject><subject>Centralized control</subject><subject>Computer science; control theory; systems</subject><subject>Control systems</subject><subject>Control theory. Systems</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Exact sciences and technology</subject><subject>Large-scale systems</subject><subject>Mathematics</subject><subject>Mechanical systems</subject><subject>Oscillators</subject><subject>Stochastic processes</subject><subject>Uncertainty</subject><issn>0191-2216</issn><isbn>9780780386822</isbn><isbn>0780386825</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkDtrwzAUhQVtoWmavdBFS0e7V9K1HmNxnxDo0szhWpGoSuwYywT872twoXDgDN_HGQ5jdwJKIcA91s91KQGwFKhAGXfBNs5YmKOstlJeshUIJwophb5mNzn_AIAFrVcMdp0Pw0ipGyeeOj5-B36YOmqTz_wUuT91OQxnGtM58Jb6fMuuIh1z2Pz1mu1eX77q92L7-fZRP20LLx2OhSGDWmJ00ZsGGo-xiqZqGu1RkyFJQXsjna0EgkcxM0CjBSjvUNrmoNbsYdntKXs6xoE6n_K-H1JLw7QXBp1VWs7e_eKlEMI_Xo5Qv_fvT7w</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Junge, O.</creator><creator>Marsden, J.E.</creator><creator>Mezic, I.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>Uncertainty in the dynamics of conservative maps</title><author>Junge, O. ; Marsden, J.E. ; Mezic, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-7a74624f9fc7b0bc4f5f75bb6c46a7a2ae6c72985140c41f750476103c9428bd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Bifurcation</topic><topic>Centralized control</topic><topic>Computer science; control theory; systems</topic><topic>Control systems</topic><topic>Control theory. Systems</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Exact sciences and technology</topic><topic>Large-scale systems</topic><topic>Mathematics</topic><topic>Mechanical systems</topic><topic>Oscillators</topic><topic>Stochastic processes</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Junge, O.</creatorcontrib><creatorcontrib>Marsden, J.E.</creatorcontrib><creatorcontrib>Mezic, I.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Junge, O.</au><au>Marsden, J.E.</au><au>Mezic, I.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Uncertainty in the dynamics of conservative maps</atitle><btitle>2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601)</btitle><stitle>CDC</stitle><date>2004</date><risdate>2004</risdate><volume>2</volume><spage>2225</spage><epage>2230 Vol.2</epage><pages>2225-2230 Vol.2</pages><issn>0191-2216</issn><isbn>9780780386822</isbn><isbn>0780386825</isbn><abstract>This paper studies the effect of uncertainty, using random perturbations, on area preserving maps of R/sub 2/ to itself. We focus on the standard map and a discrete Duffing oscillator as specific examples. We relate the level of uncertainty to the large-scale features in the dynamics in a precise way. We also study the effect of such perturbations on bifurcations in such maps. The main tools used for these investigations are a study of the eigenfunction and eigenvalue structure of the associated Perron-Frobenius operator along with set oriented methods for the numerical computations.</abstract><cop>Piscataway NJ</cop><pub>IEEE</pub><doi>10.1109/CDC.2004.1430379</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0191-2216 |
ispartof | 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601), 2004, Vol.2, p.2225-2230 Vol.2 |
issn | 0191-2216 |
language | eng |
recordid | cdi_ieee_primary_1430379 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Applied sciences Bifurcation Centralized control Computer science control theory systems Control systems Control theory. Systems Eigenvalues and eigenfunctions Exact sciences and technology Large-scale systems Mathematics Mechanical systems Oscillators Stochastic processes Uncertainty |
title | Uncertainty in the dynamics of conservative maps |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T00%3A34%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Uncertainty%20in%20the%20dynamics%20of%20conservative%20maps&rft.btitle=2004%2043rd%20IEEE%20Conference%20on%20Decision%20and%20Control%20(CDC)%20(IEEE%20Cat.%20No.04CH37601)&rft.au=Junge,%20O.&rft.date=2004&rft.volume=2&rft.spage=2225&rft.epage=2230%20Vol.2&rft.pages=2225-2230%20Vol.2&rft.issn=0191-2216&rft.isbn=9780780386822&rft.isbn_list=0780386825&rft_id=info:doi/10.1109/CDC.2004.1430379&rft_dat=%3Cpascalfrancis_6IE%3E17498362%3C/pascalfrancis_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1430379&rfr_iscdi=true |