Uncertainty in the dynamics of conservative maps

This paper studies the effect of uncertainty, using random perturbations, on area preserving maps of R/sub 2/ to itself. We focus on the standard map and a discrete Duffing oscillator as specific examples. We relate the level of uncertainty to the large-scale features in the dynamics in a precise wa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Junge, O., Marsden, J.E., Mezic, I.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper studies the effect of uncertainty, using random perturbations, on area preserving maps of R/sub 2/ to itself. We focus on the standard map and a discrete Duffing oscillator as specific examples. We relate the level of uncertainty to the large-scale features in the dynamics in a precise way. We also study the effect of such perturbations on bifurcations in such maps. The main tools used for these investigations are a study of the eigenfunction and eigenvalue structure of the associated Perron-Frobenius operator along with set oriented methods for the numerical computations.
ISSN:0191-2216
DOI:10.1109/CDC.2004.1430379