A bayesian approach to array geometry design
In this paper, we consider the design of planar arrays that optimize direction-of-arrival (DOA) estimation performance. We assume that the single-source DOA is a random variable with a known prior probability distribution, and the sensors of the array are constrained to lie in a region with an arbit...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2005-05, Vol.53 (5), p.1919-1923 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we consider the design of planar arrays that optimize direction-of-arrival (DOA) estimation performance. We assume that the single-source DOA is a random variable with a known prior probability distribution, and the sensors of the array are constrained to lie in a region with an arbitrary boundary. The Crame/spl acute/r-Rao Bound (CRB) and the Fisher Information Matrix (FIM) for single-source DOA constitute the basis of the optimality criteria. We relate the design criteria to a Bayesian CRB criterion and to array beamwidth; we also derive closed-form expressions for the design criteria when the DOA prior is uniform on a sector of angles. We show that optimal arrays have elements on the constraint boundary, thus providing a reduced dimension iterative solution procedure. Finally, we present example designs. |
---|---|
ISSN: | 1053-587X 1941-0476 |
DOI: | 10.1109/TSP.2005.845487 |