EKENS: a learning on nonlinear blindly mixed signals

We present experimental results of the blind separation of independent sources from their nonlinear mixtures. The proposed EKENS (equivariant kernel nonlinear separation) algorithm is a generalization of a natural gradient algorithm and the Gram-Charlier series, which is extended in two ways: (1) to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Leong, W.Y., Homer, J.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page iv/84 Vol. 4
container_issue
container_start_page iv/81
container_title
container_volume 4
creator Leong, W.Y.
Homer, J.
description We present experimental results of the blind separation of independent sources from their nonlinear mixtures. The proposed EKENS (equivariant kernel nonlinear separation) algorithm is a generalization of a natural gradient algorithm and the Gram-Charlier series, which is extended in two ways: (1) to deal with nonlinear mapping; (2) to be able to adapt to the actual statistical distributions of the sources by estimating the kernel density distribution at the output signals. The observations are modelled based on nonlinear generative multilayer perceptron analysis. The theory of the EKENS learning algorithm is discussed. Simulations show that the EKENS algorithm is able to find the underlying sources from the observation, even though the data generating mapping is nonlinear and unknown.
doi_str_mv 10.1109/ICASSP.2005.1415950
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1415950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1415950</ieee_id><sourcerecordid>1415950</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-70e5021e57aa8c3342c1c3eded54e22d9665b9ff8aa0def5fe0319665ca6b65f3</originalsourceid><addsrcrecordid>eNotj01Lw0AYhBc_wFDzC3rZP5D47nfWm5RoxaJCevBWNtl3y0q6lcSD_feu2GHggTkMM4QsGdSMgb17Xj103XvNAVTNJFNWwQUpuDC2YhY-LklpTQPZommMZFekYIpDpZm0N6Sc50_I0twYLQsi25f2tbunjo7ophTTnh4TTcc0xpQD2mf68UQP8Qc9neM-uXG-JdchA8szF2T72G5X62rz9pTXbapo4bsygAo4Q2WcawYhJB_YINCjVxI591Zr1dsQGufAY1ABQbC_cHC61yqIBVn-10ZE3H1N8eCm0-58WfwChm1H0A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>EKENS: a learning on nonlinear blindly mixed signals</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Leong, W.Y. ; Homer, J.</creator><creatorcontrib>Leong, W.Y. ; Homer, J.</creatorcontrib><description>We present experimental results of the blind separation of independent sources from their nonlinear mixtures. The proposed EKENS (equivariant kernel nonlinear separation) algorithm is a generalization of a natural gradient algorithm and the Gram-Charlier series, which is extended in two ways: (1) to deal with nonlinear mapping; (2) to be able to adapt to the actual statistical distributions of the sources by estimating the kernel density distribution at the output signals. The observations are modelled based on nonlinear generative multilayer perceptron analysis. The theory of the EKENS learning algorithm is discussed. Simulations show that the EKENS algorithm is able to find the underlying sources from the observation, even though the data generating mapping is nonlinear and unknown.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9780780388741</identifier><identifier>ISBN: 0780388747</identifier><identifier>EISSN: 2379-190X</identifier><identifier>DOI: 10.1109/ICASSP.2005.1415950</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cancer ; Distribution functions ; Gaussian distribution ; Information technology ; Kernel ; Polynomials ; Probability density function ; Probability distribution ; Random variables ; Vectors</subject><ispartof>Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005, 2005, Vol.4, p.iv/81-iv/84 Vol. 4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1415950$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1415950$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Leong, W.Y.</creatorcontrib><creatorcontrib>Homer, J.</creatorcontrib><title>EKENS: a learning on nonlinear blindly mixed signals</title><title>Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005</title><addtitle>ICASSP</addtitle><description>We present experimental results of the blind separation of independent sources from their nonlinear mixtures. The proposed EKENS (equivariant kernel nonlinear separation) algorithm is a generalization of a natural gradient algorithm and the Gram-Charlier series, which is extended in two ways: (1) to deal with nonlinear mapping; (2) to be able to adapt to the actual statistical distributions of the sources by estimating the kernel density distribution at the output signals. The observations are modelled based on nonlinear generative multilayer perceptron analysis. The theory of the EKENS learning algorithm is discussed. Simulations show that the EKENS algorithm is able to find the underlying sources from the observation, even though the data generating mapping is nonlinear and unknown.</description><subject>Cancer</subject><subject>Distribution functions</subject><subject>Gaussian distribution</subject><subject>Information technology</subject><subject>Kernel</subject><subject>Polynomials</subject><subject>Probability density function</subject><subject>Probability distribution</subject><subject>Random variables</subject><subject>Vectors</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9780780388741</isbn><isbn>0780388747</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj01Lw0AYhBc_wFDzC3rZP5D47nfWm5RoxaJCevBWNtl3y0q6lcSD_feu2GHggTkMM4QsGdSMgb17Xj103XvNAVTNJFNWwQUpuDC2YhY-LklpTQPZommMZFekYIpDpZm0N6Sc50_I0twYLQsi25f2tbunjo7ophTTnh4TTcc0xpQD2mf68UQP8Qc9neM-uXG-JdchA8szF2T72G5X62rz9pTXbapo4bsygAo4Q2WcawYhJB_YINCjVxI591Zr1dsQGufAY1ABQbC_cHC61yqIBVn-10ZE3H1N8eCm0-58WfwChm1H0A</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Leong, W.Y.</creator><creator>Homer, J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2005</creationdate><title>EKENS: a learning on nonlinear blindly mixed signals</title><author>Leong, W.Y. ; Homer, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-70e5021e57aa8c3342c1c3eded54e22d9665b9ff8aa0def5fe0319665ca6b65f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Cancer</topic><topic>Distribution functions</topic><topic>Gaussian distribution</topic><topic>Information technology</topic><topic>Kernel</topic><topic>Polynomials</topic><topic>Probability density function</topic><topic>Probability distribution</topic><topic>Random variables</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Leong, W.Y.</creatorcontrib><creatorcontrib>Homer, J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Leong, W.Y.</au><au>Homer, J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>EKENS: a learning on nonlinear blindly mixed signals</atitle><btitle>Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005</btitle><stitle>ICASSP</stitle><date>2005</date><risdate>2005</risdate><volume>4</volume><spage>iv/81</spage><epage>iv/84 Vol. 4</epage><pages>iv/81-iv/84 Vol. 4</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9780780388741</isbn><isbn>0780388747</isbn><abstract>We present experimental results of the blind separation of independent sources from their nonlinear mixtures. The proposed EKENS (equivariant kernel nonlinear separation) algorithm is a generalization of a natural gradient algorithm and the Gram-Charlier series, which is extended in two ways: (1) to deal with nonlinear mapping; (2) to be able to adapt to the actual statistical distributions of the sources by estimating the kernel density distribution at the output signals. The observations are modelled based on nonlinear generative multilayer perceptron analysis. The theory of the EKENS learning algorithm is discussed. Simulations show that the EKENS algorithm is able to find the underlying sources from the observation, even though the data generating mapping is nonlinear and unknown.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2005.1415950</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005, 2005, Vol.4, p.iv/81-iv/84 Vol. 4
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_1415950
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Cancer
Distribution functions
Gaussian distribution
Information technology
Kernel
Polynomials
Probability density function
Probability distribution
Random variables
Vectors
title EKENS: a learning on nonlinear blindly mixed signals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T17%3A27%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=EKENS:%20a%20learning%20on%20nonlinear%20blindly%20mixed%20signals&rft.btitle=Proceedings.%20(ICASSP%20'05).%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech,%20and%20Signal%20Processing,%202005&rft.au=Leong,%20W.Y.&rft.date=2005&rft.volume=4&rft.spage=iv/81&rft.epage=iv/84%20Vol.%204&rft.pages=iv/81-iv/84%20Vol.%204&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9780780388741&rft.isbn_list=0780388747&rft_id=info:doi/10.1109/ICASSP.2005.1415950&rft_dat=%3Cieee_6IE%3E1415950%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1415950&rfr_iscdi=true