EKENS: a learning on nonlinear blindly mixed signals

We present experimental results of the blind separation of independent sources from their nonlinear mixtures. The proposed EKENS (equivariant kernel nonlinear separation) algorithm is a generalization of a natural gradient algorithm and the Gram-Charlier series, which is extended in two ways: (1) to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Leong, W.Y., Homer, J.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present experimental results of the blind separation of independent sources from their nonlinear mixtures. The proposed EKENS (equivariant kernel nonlinear separation) algorithm is a generalization of a natural gradient algorithm and the Gram-Charlier series, which is extended in two ways: (1) to deal with nonlinear mapping; (2) to be able to adapt to the actual statistical distributions of the sources by estimating the kernel density distribution at the output signals. The observations are modelled based on nonlinear generative multilayer perceptron analysis. The theory of the EKENS learning algorithm is discussed. Simulations show that the EKENS algorithm is able to find the underlying sources from the observation, even though the data generating mapping is nonlinear and unknown.
ISSN:1520-6149
2379-190X
DOI:10.1109/ICASSP.2005.1415950