Using hardware to configure a load-balanced switch
Efficient router architectures should have predictable throughput and scalable capacity, as well as internal optical technology (such as optical switches and wavelength division multiplexing) that can increase capacity by reducing power consumption. The load-balanced switch is a promising way to sca...
Gespeichert in:
Veröffentlicht in: | IEEE MICRO 2005-01, Vol.25 (1), p.70-78 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Efficient router architectures should have predictable throughput and scalable capacity, as well as internal optical technology (such as optical switches and wavelength division multiplexing) that can increase capacity by reducing power consumption. The load-balanced switch is a promising way to scale router capacity. In this 100-terabit-per-second router, an optical switch spreads traffic evenly among linecards. When the network operator adds or removes linecards, reconfiguring the switch can be time consuming, but a polynomial-time algorithm drastically reduces the required memory-intensive operations, yielding a switch-reconfiguration time below 50 ms. |
---|---|
ISSN: | 0272-1732 1937-4143 |
DOI: | 10.1109/MM.2005.23 |