Design of a 3-D fully depleted SOI computational RAM
We introduce a three-dimensional (3-D) processor-in-memory integrated circuit design that provides progressively increasing processing power as the number of stacked dies increases, while incurring no extra design effort or mask sets. Innovative techniques for processor/memory redundancy and fast gl...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on very large scale integration (VLSI) systems 2005-03, Vol.13 (3), p.358-369 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce a three-dimensional (3-D) processor-in-memory integrated circuit design that provides progressively increasing processing power as the number of stacked dies increases, while incurring no extra design effort or mask sets. Innovative techniques for processor/memory redundancy and fast global bus evaluation are described. The architecture can be augmented with a nearest-neighbor physical 3-D communications network that can substantially reduce interconnect lengths and relieve routing congestion. The test chip, with 128 Kb of memory and 512 processing elements (PEs) on two fully depleted silicon-on-insulator (SOI) dies, can achieve a peak of 170 billion-bit-operations per second at 400 MHz. |
---|---|
ISSN: | 1063-8210 1557-9999 |
DOI: | 10.1109/TVLSI.2004.842890 |