Fast precomputed VQ with optimal bit allocation for lossless compression of ultraspectral sounder data
The compression of three-dimensional ultraspectral sounder data is a challenging task given its unprecedented size. We develop a fast precomputed vector quantization (FPVQ) scheme with optimal bit allocation for lossless compression of ultraspectral sounder data. The scheme consists of linear predic...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 417 |
---|---|
container_issue | |
container_start_page | 408 |
container_title | |
container_volume | |
creator | Bormin Huang Ahuja, A. Hung-Lung Huang |
description | The compression of three-dimensional ultraspectral sounder data is a challenging task given its unprecedented size. We develop a fast precomputed vector quantization (FPVQ) scheme with optimal bit allocation for lossless compression of ultraspectral sounder data. The scheme consists of linear prediction, bit-depth partitioning, vector quantization, and optimal bit allocation. Linear prediction serves as a whitening tool to make the prediction residuals of each channel close to a Gaussian distribution, and then these residuals are partitioned based on bit depths. Each partition is further divided into several sub-partitions with various 2/sup k/ channels for vector quantization. Only the codebooks with 2/sup m/ codewords for 2/sup k/-dimensional normalized Gaussian distributions are precomputed. A new algorithm is developed for optimal bit allocation among subpartitions. Unlike previous algorithms that may yield a sub-optimal solution, the proposed algorithm guarantees to find the minimum of the cost function under the constraint of a given total bit rate. Numerical experiments upon the NASA AIRS data show that the FPVQ scheme gives high compression ratios for lossless compression of ultraspectral sounder data. |
doi_str_mv | 10.1109/DCC.2005.41 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1402202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1402202</ieee_id><sourcerecordid>1402202</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-563636e7bf4e96c49b9bc42b9ee0405c44e1131e36a42906f4ffbbeaae0d0b253</originalsourceid><addsrcrecordid>eNotj01LxDAYhIMf4O7qyaOX_IHWN581R6muCgsiqNclad9gJbspSYr47-3iMocZeJiBIeSaQc0YmNuHtq05gKolOyELLhpVgVDmlCyh0UZxAcackQUDfTcDJi_IMudvgLmj2YL4tc2Fjgm7uBungj39fKM_Q_micSzDzgbqhkJtCLGzZYh76mOiIeYcMGd6KKU5HED0dAol2TxiN1ugOU77HhPtbbGX5NzbkPHq6CvysX58b5-rzevTS3u_qQbWqFIpLWZh47xEoztpnHGd5M4gggTVSYmMCYZCW8kNaC-9dw6tRejBcSVW5OZ_d0DE7ZjmB-l3yyRwDlz8AT9MWI4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fast precomputed VQ with optimal bit allocation for lossless compression of ultraspectral sounder data</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bormin Huang ; Ahuja, A. ; Hung-Lung Huang</creator><creatorcontrib>Bormin Huang ; Ahuja, A. ; Hung-Lung Huang</creatorcontrib><description>The compression of three-dimensional ultraspectral sounder data is a challenging task given its unprecedented size. We develop a fast precomputed vector quantization (FPVQ) scheme with optimal bit allocation for lossless compression of ultraspectral sounder data. The scheme consists of linear prediction, bit-depth partitioning, vector quantization, and optimal bit allocation. Linear prediction serves as a whitening tool to make the prediction residuals of each channel close to a Gaussian distribution, and then these residuals are partitioned based on bit depths. Each partition is further divided into several sub-partitions with various 2/sup k/ channels for vector quantization. Only the codebooks with 2/sup m/ codewords for 2/sup k/-dimensional normalized Gaussian distributions are precomputed. A new algorithm is developed for optimal bit allocation among subpartitions. Unlike previous algorithms that may yield a sub-optimal solution, the proposed algorithm guarantees to find the minimum of the cost function under the constraint of a given total bit rate. Numerical experiments upon the NASA AIRS data show that the FPVQ scheme gives high compression ratios for lossless compression of ultraspectral sounder data.</description><identifier>ISSN: 1068-0314</identifier><identifier>ISBN: 0769523099</identifier><identifier>ISBN: 9780769523095</identifier><identifier>EISSN: 2375-0359</identifier><identifier>DOI: 10.1109/DCC.2005.41</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bit rate ; Data compression ; Gaussian distribution ; Hyperspectral imaging ; Image coding ; Information retrieval ; Infrared imaging ; Partitioning algorithms ; Satellites ; Vector quantization</subject><ispartof>Data Compression Conference, 2005, p.408-417</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1402202$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1402202$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bormin Huang</creatorcontrib><creatorcontrib>Ahuja, A.</creatorcontrib><creatorcontrib>Hung-Lung Huang</creatorcontrib><title>Fast precomputed VQ with optimal bit allocation for lossless compression of ultraspectral sounder data</title><title>Data Compression Conference</title><addtitle>DCC</addtitle><description>The compression of three-dimensional ultraspectral sounder data is a challenging task given its unprecedented size. We develop a fast precomputed vector quantization (FPVQ) scheme with optimal bit allocation for lossless compression of ultraspectral sounder data. The scheme consists of linear prediction, bit-depth partitioning, vector quantization, and optimal bit allocation. Linear prediction serves as a whitening tool to make the prediction residuals of each channel close to a Gaussian distribution, and then these residuals are partitioned based on bit depths. Each partition is further divided into several sub-partitions with various 2/sup k/ channels for vector quantization. Only the codebooks with 2/sup m/ codewords for 2/sup k/-dimensional normalized Gaussian distributions are precomputed. A new algorithm is developed for optimal bit allocation among subpartitions. Unlike previous algorithms that may yield a sub-optimal solution, the proposed algorithm guarantees to find the minimum of the cost function under the constraint of a given total bit rate. Numerical experiments upon the NASA AIRS data show that the FPVQ scheme gives high compression ratios for lossless compression of ultraspectral sounder data.</description><subject>Bit rate</subject><subject>Data compression</subject><subject>Gaussian distribution</subject><subject>Hyperspectral imaging</subject><subject>Image coding</subject><subject>Information retrieval</subject><subject>Infrared imaging</subject><subject>Partitioning algorithms</subject><subject>Satellites</subject><subject>Vector quantization</subject><issn>1068-0314</issn><issn>2375-0359</issn><isbn>0769523099</isbn><isbn>9780769523095</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj01LxDAYhIMf4O7qyaOX_IHWN581R6muCgsiqNclad9gJbspSYr47-3iMocZeJiBIeSaQc0YmNuHtq05gKolOyELLhpVgVDmlCyh0UZxAcackQUDfTcDJi_IMudvgLmj2YL4tc2Fjgm7uBungj39fKM_Q_micSzDzgbqhkJtCLGzZYh76mOiIeYcMGd6KKU5HED0dAol2TxiN1ugOU77HhPtbbGX5NzbkPHq6CvysX58b5-rzevTS3u_qQbWqFIpLWZh47xEoztpnHGd5M4gggTVSYmMCYZCW8kNaC-9dw6tRejBcSVW5OZ_d0DE7ZjmB-l3yyRwDlz8AT9MWI4</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Bormin Huang</creator><creator>Ahuja, A.</creator><creator>Hung-Lung Huang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2005</creationdate><title>Fast precomputed VQ with optimal bit allocation for lossless compression of ultraspectral sounder data</title><author>Bormin Huang ; Ahuja, A. ; Hung-Lung Huang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-563636e7bf4e96c49b9bc42b9ee0405c44e1131e36a42906f4ffbbeaae0d0b253</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Bit rate</topic><topic>Data compression</topic><topic>Gaussian distribution</topic><topic>Hyperspectral imaging</topic><topic>Image coding</topic><topic>Information retrieval</topic><topic>Infrared imaging</topic><topic>Partitioning algorithms</topic><topic>Satellites</topic><topic>Vector quantization</topic><toplevel>online_resources</toplevel><creatorcontrib>Bormin Huang</creatorcontrib><creatorcontrib>Ahuja, A.</creatorcontrib><creatorcontrib>Hung-Lung Huang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bormin Huang</au><au>Ahuja, A.</au><au>Hung-Lung Huang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fast precomputed VQ with optimal bit allocation for lossless compression of ultraspectral sounder data</atitle><btitle>Data Compression Conference</btitle><stitle>DCC</stitle><date>2005</date><risdate>2005</risdate><spage>408</spage><epage>417</epage><pages>408-417</pages><issn>1068-0314</issn><eissn>2375-0359</eissn><isbn>0769523099</isbn><isbn>9780769523095</isbn><abstract>The compression of three-dimensional ultraspectral sounder data is a challenging task given its unprecedented size. We develop a fast precomputed vector quantization (FPVQ) scheme with optimal bit allocation for lossless compression of ultraspectral sounder data. The scheme consists of linear prediction, bit-depth partitioning, vector quantization, and optimal bit allocation. Linear prediction serves as a whitening tool to make the prediction residuals of each channel close to a Gaussian distribution, and then these residuals are partitioned based on bit depths. Each partition is further divided into several sub-partitions with various 2/sup k/ channels for vector quantization. Only the codebooks with 2/sup m/ codewords for 2/sup k/-dimensional normalized Gaussian distributions are precomputed. A new algorithm is developed for optimal bit allocation among subpartitions. Unlike previous algorithms that may yield a sub-optimal solution, the proposed algorithm guarantees to find the minimum of the cost function under the constraint of a given total bit rate. Numerical experiments upon the NASA AIRS data show that the FPVQ scheme gives high compression ratios for lossless compression of ultraspectral sounder data.</abstract><pub>IEEE</pub><doi>10.1109/DCC.2005.41</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1068-0314 |
ispartof | Data Compression Conference, 2005, p.408-417 |
issn | 1068-0314 2375-0359 |
language | eng |
recordid | cdi_ieee_primary_1402202 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Bit rate Data compression Gaussian distribution Hyperspectral imaging Image coding Information retrieval Infrared imaging Partitioning algorithms Satellites Vector quantization |
title | Fast precomputed VQ with optimal bit allocation for lossless compression of ultraspectral sounder data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T17%3A22%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fast%20precomputed%20VQ%20with%20optimal%20bit%20allocation%20for%20lossless%20compression%20of%20ultraspectral%20sounder%20data&rft.btitle=Data%20Compression%20Conference&rft.au=Bormin%20Huang&rft.date=2005&rft.spage=408&rft.epage=417&rft.pages=408-417&rft.issn=1068-0314&rft.eissn=2375-0359&rft.isbn=0769523099&rft.isbn_list=9780769523095&rft_id=info:doi/10.1109/DCC.2005.41&rft_dat=%3Cieee_6IE%3E1402202%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1402202&rfr_iscdi=true |