Fast precomputed VQ with optimal bit allocation for lossless compression of ultraspectral sounder data

The compression of three-dimensional ultraspectral sounder data is a challenging task given its unprecedented size. We develop a fast precomputed vector quantization (FPVQ) scheme with optimal bit allocation for lossless compression of ultraspectral sounder data. The scheme consists of linear predic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bormin Huang, Ahuja, A., Hung-Lung Huang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The compression of three-dimensional ultraspectral sounder data is a challenging task given its unprecedented size. We develop a fast precomputed vector quantization (FPVQ) scheme with optimal bit allocation for lossless compression of ultraspectral sounder data. The scheme consists of linear prediction, bit-depth partitioning, vector quantization, and optimal bit allocation. Linear prediction serves as a whitening tool to make the prediction residuals of each channel close to a Gaussian distribution, and then these residuals are partitioned based on bit depths. Each partition is further divided into several sub-partitions with various 2/sup k/ channels for vector quantization. Only the codebooks with 2/sup m/ codewords for 2/sup k/-dimensional normalized Gaussian distributions are precomputed. A new algorithm is developed for optimal bit allocation among subpartitions. Unlike previous algorithms that may yield a sub-optimal solution, the proposed algorithm guarantees to find the minimum of the cost function under the constraint of a given total bit rate. Numerical experiments upon the NASA AIRS data show that the FPVQ scheme gives high compression ratios for lossless compression of ultraspectral sounder data.
ISSN:1068-0314
2375-0359
DOI:10.1109/DCC.2005.41