Performance Modeling for the Panda Array I/O Library

We present an analytical performance model for Panda, a library for synchronized i/o of large multidimensional arrays on parallel and sequential platforms, and show how the Panda developers use this model to evaluate Panda's parallel i/o performance and guide future Panda development. The model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chen, Y., Winslett, M., Kuo, S., Cho, Y., Subramaniam, M., Seamons, K.E.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present an analytical performance model for Panda, a library for synchronized i/o of large multidimensional arrays on parallel and sequential platforms, and show how the Panda developers use this model to evaluate Panda's parallel i/o performance and guide future Panda development. The model validation shows that system developers can simplify performance analysis, identify potential performance bottlenecks, and study the design trade-offs for Panda on massively parallel platforms more easily than by conducting empirical experiments. More importantly, we show that the outputs of the performance model can be used to help make optimal plans for handling application i/o requests, the first step toward our long-term goal of automatically optimizing i/o request handling in Panda.
DOI:10.1109/SUPERC.1996.183547