Univariate time series forecasting with fuzzy CMAC

In financial and business areas, forecasting is a necessary tool that enables decision makers to predict changes in demands, plans and sales. This work applies a novel fuzzy cerebellar-model-articulation-controller (FCMAC) into univariate time-series forecasting and investigates its performance in c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Da-Ming Shi, Jun-Bin Gao, Tilani, R.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In financial and business areas, forecasting is a necessary tool that enables decision makers to predict changes in demands, plans and sales. This work applies a novel fuzzy cerebellar-model-articulation-controller (FCMAC) into univariate time-series forecasting and investigates its performance in comparison to established techniques such as single exponential smoothing, Holt's linear trend, Holt-Winter's additive and multiplicative methods and the Box-Jenkin's ARIMA model. Experimental results from the M3 competition data reveal that the FCMAC model yielded lower errors for certain data sets. The conditions under which the FCMAC model emerged superior are discussed.
DOI:10.1109/ICMLC.2004.1384570