Visualization in Grid Computing Environments
Grid computing provides a challenge for visualization system designers. In this research, we evolve the dataflow concept to allow parts of the visualization process to be executed remotely in a secure and seamless manner. We see dataflow at three levels: an abstract specification of the intent of th...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Grid computing provides a challenge for visualization system designers. In this research, we evolve the dataflow concept to allow parts of the visualization process to be executed remotely in a secure and seamless manner. We see dataflow at three levels: an abstract specification of the intent of the visualization; a binding of these abstract modules to a specific software system; and then a binding of software to processing and other resources. We develop an XML application capable of describing visualization at the three levels. To complement this, we have implemented an extension to a popular visualization system, IRIS Explorer, which allows modules in a dataflow pipeline to run on a set of Grid resources. For computational steering applications, we have developed a library that allows a visualization system front-end to connect to a simulation running remotely on a Grid resource. We demonstrate the work in two applications: the dispersion of a pollutant under different wind conditions; and the solution of a challenging numerical problem in elastohydrodynamic lubrication |
---|---|
DOI: | 10.1109/VISUAL.2004.112 |