Theoretical and experimental study of optical gain and linewidth enhancement factor of type-I quantum-cascade lasers
A theoretical and experimental study of the optical gain and the linewidth enhancement factor (LEF) of a type-I quantum-cascade (QC) laser is reported. QC lasers have a symmetrical gain spectrum because the optical transition occurs between conduction subbands. According to the Kramers-Kronig relati...
Gespeichert in:
Veröffentlicht in: | IEEE journal of quantum electronics 2004-12, Vol.40 (12), p.1663-1674 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1674 |
---|---|
container_issue | 12 |
container_start_page | 1663 |
container_title | IEEE journal of quantum electronics |
container_volume | 40 |
creator | Jungho Kim Lerttamrab, M. Shun Lien Chuang Gmachl, C. Sivco, D.L. Capasso, F. Cho, A.Y. |
description | A theoretical and experimental study of the optical gain and the linewidth enhancement factor (LEF) of a type-I quantum-cascade (QC) laser is reported. QC lasers have a symmetrical gain spectrum because the optical transition occurs between conduction subbands. According to the Kramers-Kronig relation, a zero LEF is predicted at the gain peak, but there has been no experimental observation of a zero LEF. There are other mechanisms that affect the LEF such as device self-heating, and the refractive index change due to other transition states not involved in lasing action. In this paper, the effects of these mechanisms on the LEF of a type-I QC laser are investigated theoretically and experimentally. The optical gain spectrum and the LEF are measured using the Hakki-Paoli method. Device self-heating on the wavelength shift in the Fabry-Perot modes is isolated by measuring the shift of the lasing wavelength above the threshold current. The band structure of a QC laser is calculated by solving the Schro/spl uml/dinger-Poisson equation self-consistently. We use the Gaussian lineshape function for gain change and the confluent hypergeometric function of the first kind for refractive index change, which satisfies the Kramers-Kronig relation. The refractive index change caused by various transition states is calculated by the theoretical model of a type-I QC laser. The calculated LEF shows good agreement with the experimental measurement. |
doi_str_mv | 10.1109/JQE.2004.837666 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1359974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1359974</ieee_id><sourcerecordid>2427661741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-b140ef7478c6292fd4da05534093dce22e7ab05a255937d029750e62db957feb3</originalsourceid><addsrcrecordid>eNpdkc1r3DAUxEVpoNsk5x5yMYH25l19WtKxhG2bsBACyVlopeeug1d2JJl2__vIdSDQk5D0m-G9GYS-ELwmBOvN3cN2TTHma8Vk0zQf0IoIoWoiCfuIVhgTVWui5Sf0OaXncuVc4RXKjwcYIuTO2b6ywVfwd4TYHSHk8pDy5E_V0FbDuBC_bRf-YX0X4E_n86GCcLDBwayoWuvyEGdBPo1Q31Yvkw15OtbOJmc9VL1NENMFOmttn-Dy7TxHTz-2jze_6t39z9ub77vacSJyvSccQyu5VK6hmraee4uFYBxr5h1QCtLusbBUCM2kx1RLgaGhfq-FbGHPztG3xXeMw8sEKZtjlxz0vQ0wTMlQ1QhVQing9X_g8zDFUGYzSjGtWImrQJsFcnFIKUJrxhKUjSdDsJkrMKUCM1dglgqK4uub7bx-38YSVJfeZQ1VkhJWuKuF6wDg_ZsJrSVnrxnGj-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883983014</pqid></control><display><type>article</type><title>Theoretical and experimental study of optical gain and linewidth enhancement factor of type-I quantum-cascade lasers</title><source>IEEE Electronic Library (IEL)</source><creator>Jungho Kim ; Lerttamrab, M. ; Shun Lien Chuang ; Gmachl, C. ; Sivco, D.L. ; Capasso, F. ; Cho, A.Y.</creator><creatorcontrib>Jungho Kim ; Lerttamrab, M. ; Shun Lien Chuang ; Gmachl, C. ; Sivco, D.L. ; Capasso, F. ; Cho, A.Y.</creatorcontrib><description>A theoretical and experimental study of the optical gain and the linewidth enhancement factor (LEF) of a type-I quantum-cascade (QC) laser is reported. QC lasers have a symmetrical gain spectrum because the optical transition occurs between conduction subbands. According to the Kramers-Kronig relation, a zero LEF is predicted at the gain peak, but there has been no experimental observation of a zero LEF. There are other mechanisms that affect the LEF such as device self-heating, and the refractive index change due to other transition states not involved in lasing action. In this paper, the effects of these mechanisms on the LEF of a type-I QC laser are investigated theoretically and experimentally. The optical gain spectrum and the LEF are measured using the Hakki-Paoli method. Device self-heating on the wavelength shift in the Fabry-Perot modes is isolated by measuring the shift of the lasing wavelength above the threshold current. The band structure of a QC laser is calculated by solving the Schro/spl uml/dinger-Poisson equation self-consistently. We use the Gaussian lineshape function for gain change and the confluent hypergeometric function of the first kind for refractive index change, which satisfies the Kramers-Kronig relation. The refractive index change caused by various transition states is calculated by the theoretical model of a type-I QC laser. The calculated LEF shows good agreement with the experimental measurement.</description><identifier>ISSN: 0018-9197</identifier><identifier>EISSN: 1558-1713</identifier><identifier>DOI: 10.1109/JQE.2004.837666</identifier><identifier>CODEN: IEJQA7</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Design of specific laser systems ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Gain measurement ; Intersubband transition ; Laser modes ; Laser optical systems: design and operation ; Laser theory ; Laser transitions ; Lasers ; linewidth enhancement factor (LEF) ; Optical refraction ; Optical variables control ; Optics ; Physics ; Quantum cascade lasers ; Quantum mechanics ; quantum-cascade (QC) laser ; Refractive index ; Semiconductor lasers; laser diodes ; Wavelength measurement</subject><ispartof>IEEE journal of quantum electronics, 2004-12, Vol.40 (12), p.1663-1674</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-b140ef7478c6292fd4da05534093dce22e7ab05a255937d029750e62db957feb3</citedby><cites>FETCH-LOGICAL-c415t-b140ef7478c6292fd4da05534093dce22e7ab05a255937d029750e62db957feb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1359974$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1359974$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16287213$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jungho Kim</creatorcontrib><creatorcontrib>Lerttamrab, M.</creatorcontrib><creatorcontrib>Shun Lien Chuang</creatorcontrib><creatorcontrib>Gmachl, C.</creatorcontrib><creatorcontrib>Sivco, D.L.</creatorcontrib><creatorcontrib>Capasso, F.</creatorcontrib><creatorcontrib>Cho, A.Y.</creatorcontrib><title>Theoretical and experimental study of optical gain and linewidth enhancement factor of type-I quantum-cascade lasers</title><title>IEEE journal of quantum electronics</title><addtitle>JQE</addtitle><description>A theoretical and experimental study of the optical gain and the linewidth enhancement factor (LEF) of a type-I quantum-cascade (QC) laser is reported. QC lasers have a symmetrical gain spectrum because the optical transition occurs between conduction subbands. According to the Kramers-Kronig relation, a zero LEF is predicted at the gain peak, but there has been no experimental observation of a zero LEF. There are other mechanisms that affect the LEF such as device self-heating, and the refractive index change due to other transition states not involved in lasing action. In this paper, the effects of these mechanisms on the LEF of a type-I QC laser are investigated theoretically and experimentally. The optical gain spectrum and the LEF are measured using the Hakki-Paoli method. Device self-heating on the wavelength shift in the Fabry-Perot modes is isolated by measuring the shift of the lasing wavelength above the threshold current. The band structure of a QC laser is calculated by solving the Schro/spl uml/dinger-Poisson equation self-consistently. We use the Gaussian lineshape function for gain change and the confluent hypergeometric function of the first kind for refractive index change, which satisfies the Kramers-Kronig relation. The refractive index change caused by various transition states is calculated by the theoretical model of a type-I QC laser. The calculated LEF shows good agreement with the experimental measurement.</description><subject>Design of specific laser systems</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Gain measurement</subject><subject>Intersubband transition</subject><subject>Laser modes</subject><subject>Laser optical systems: design and operation</subject><subject>Laser theory</subject><subject>Laser transitions</subject><subject>Lasers</subject><subject>linewidth enhancement factor (LEF)</subject><subject>Optical refraction</subject><subject>Optical variables control</subject><subject>Optics</subject><subject>Physics</subject><subject>Quantum cascade lasers</subject><subject>Quantum mechanics</subject><subject>quantum-cascade (QC) laser</subject><subject>Refractive index</subject><subject>Semiconductor lasers; laser diodes</subject><subject>Wavelength measurement</subject><issn>0018-9197</issn><issn>1558-1713</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkc1r3DAUxEVpoNsk5x5yMYH25l19WtKxhG2bsBACyVlopeeug1d2JJl2__vIdSDQk5D0m-G9GYS-ELwmBOvN3cN2TTHma8Vk0zQf0IoIoWoiCfuIVhgTVWui5Sf0OaXncuVc4RXKjwcYIuTO2b6ywVfwd4TYHSHk8pDy5E_V0FbDuBC_bRf-YX0X4E_n86GCcLDBwayoWuvyEGdBPo1Q31Yvkw15OtbOJmc9VL1NENMFOmttn-Dy7TxHTz-2jze_6t39z9ub77vacSJyvSccQyu5VK6hmraee4uFYBxr5h1QCtLusbBUCM2kx1RLgaGhfq-FbGHPztG3xXeMw8sEKZtjlxz0vQ0wTMlQ1QhVQing9X_g8zDFUGYzSjGtWImrQJsFcnFIKUJrxhKUjSdDsJkrMKUCM1dglgqK4uub7bx-38YSVJfeZQ1VkhJWuKuF6wDg_ZsJrSVnrxnGj-A</recordid><startdate>20041201</startdate><enddate>20041201</enddate><creator>Jungho Kim</creator><creator>Lerttamrab, M.</creator><creator>Shun Lien Chuang</creator><creator>Gmachl, C.</creator><creator>Sivco, D.L.</creator><creator>Capasso, F.</creator><creator>Cho, A.Y.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20041201</creationdate><title>Theoretical and experimental study of optical gain and linewidth enhancement factor of type-I quantum-cascade lasers</title><author>Jungho Kim ; Lerttamrab, M. ; Shun Lien Chuang ; Gmachl, C. ; Sivco, D.L. ; Capasso, F. ; Cho, A.Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-b140ef7478c6292fd4da05534093dce22e7ab05a255937d029750e62db957feb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Design of specific laser systems</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Gain measurement</topic><topic>Intersubband transition</topic><topic>Laser modes</topic><topic>Laser optical systems: design and operation</topic><topic>Laser theory</topic><topic>Laser transitions</topic><topic>Lasers</topic><topic>linewidth enhancement factor (LEF)</topic><topic>Optical refraction</topic><topic>Optical variables control</topic><topic>Optics</topic><topic>Physics</topic><topic>Quantum cascade lasers</topic><topic>Quantum mechanics</topic><topic>quantum-cascade (QC) laser</topic><topic>Refractive index</topic><topic>Semiconductor lasers; laser diodes</topic><topic>Wavelength measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jungho Kim</creatorcontrib><creatorcontrib>Lerttamrab, M.</creatorcontrib><creatorcontrib>Shun Lien Chuang</creatorcontrib><creatorcontrib>Gmachl, C.</creatorcontrib><creatorcontrib>Sivco, D.L.</creatorcontrib><creatorcontrib>Capasso, F.</creatorcontrib><creatorcontrib>Cho, A.Y.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jungho Kim</au><au>Lerttamrab, M.</au><au>Shun Lien Chuang</au><au>Gmachl, C.</au><au>Sivco, D.L.</au><au>Capasso, F.</au><au>Cho, A.Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical and experimental study of optical gain and linewidth enhancement factor of type-I quantum-cascade lasers</atitle><jtitle>IEEE journal of quantum electronics</jtitle><stitle>JQE</stitle><date>2004-12-01</date><risdate>2004</risdate><volume>40</volume><issue>12</issue><spage>1663</spage><epage>1674</epage><pages>1663-1674</pages><issn>0018-9197</issn><eissn>1558-1713</eissn><coden>IEJQA7</coden><abstract>A theoretical and experimental study of the optical gain and the linewidth enhancement factor (LEF) of a type-I quantum-cascade (QC) laser is reported. QC lasers have a symmetrical gain spectrum because the optical transition occurs between conduction subbands. According to the Kramers-Kronig relation, a zero LEF is predicted at the gain peak, but there has been no experimental observation of a zero LEF. There are other mechanisms that affect the LEF such as device self-heating, and the refractive index change due to other transition states not involved in lasing action. In this paper, the effects of these mechanisms on the LEF of a type-I QC laser are investigated theoretically and experimentally. The optical gain spectrum and the LEF are measured using the Hakki-Paoli method. Device self-heating on the wavelength shift in the Fabry-Perot modes is isolated by measuring the shift of the lasing wavelength above the threshold current. The band structure of a QC laser is calculated by solving the Schro/spl uml/dinger-Poisson equation self-consistently. We use the Gaussian lineshape function for gain change and the confluent hypergeometric function of the first kind for refractive index change, which satisfies the Kramers-Kronig relation. The refractive index change caused by various transition states is calculated by the theoretical model of a type-I QC laser. The calculated LEF shows good agreement with the experimental measurement.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JQE.2004.837666</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9197 |
ispartof | IEEE journal of quantum electronics, 2004-12, Vol.40 (12), p.1663-1674 |
issn | 0018-9197 1558-1713 |
language | eng |
recordid | cdi_ieee_primary_1359974 |
source | IEEE Electronic Library (IEL) |
subjects | Design of specific laser systems Exact sciences and technology Fundamental areas of phenomenology (including applications) Gain measurement Intersubband transition Laser modes Laser optical systems: design and operation Laser theory Laser transitions Lasers linewidth enhancement factor (LEF) Optical refraction Optical variables control Optics Physics Quantum cascade lasers Quantum mechanics quantum-cascade (QC) laser Refractive index Semiconductor lasers laser diodes Wavelength measurement |
title | Theoretical and experimental study of optical gain and linewidth enhancement factor of type-I quantum-cascade lasers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T22%3A55%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20and%20experimental%20study%20of%20optical%20gain%20and%20linewidth%20enhancement%20factor%20of%20type-I%20quantum-cascade%20lasers&rft.jtitle=IEEE%20journal%20of%20quantum%20electronics&rft.au=Jungho%20Kim&rft.date=2004-12-01&rft.volume=40&rft.issue=12&rft.spage=1663&rft.epage=1674&rft.pages=1663-1674&rft.issn=0018-9197&rft.eissn=1558-1713&rft.coden=IEJQA7&rft_id=info:doi/10.1109/JQE.2004.837666&rft_dat=%3Cproquest_RIE%3E2427661741%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=883983014&rft_id=info:pmid/&rft_ieee_id=1359974&rfr_iscdi=true |