Theoretical and experimental study of optical gain and linewidth enhancement factor of type-I quantum-cascade lasers

A theoretical and experimental study of the optical gain and the linewidth enhancement factor (LEF) of a type-I quantum-cascade (QC) laser is reported. QC lasers have a symmetrical gain spectrum because the optical transition occurs between conduction subbands. According to the Kramers-Kronig relati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of quantum electronics 2004-12, Vol.40 (12), p.1663-1674
Hauptverfasser: Jungho Kim, Lerttamrab, M., Shun Lien Chuang, Gmachl, C., Sivco, D.L., Capasso, F., Cho, A.Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1674
container_issue 12
container_start_page 1663
container_title IEEE journal of quantum electronics
container_volume 40
creator Jungho Kim
Lerttamrab, M.
Shun Lien Chuang
Gmachl, C.
Sivco, D.L.
Capasso, F.
Cho, A.Y.
description A theoretical and experimental study of the optical gain and the linewidth enhancement factor (LEF) of a type-I quantum-cascade (QC) laser is reported. QC lasers have a symmetrical gain spectrum because the optical transition occurs between conduction subbands. According to the Kramers-Kronig relation, a zero LEF is predicted at the gain peak, but there has been no experimental observation of a zero LEF. There are other mechanisms that affect the LEF such as device self-heating, and the refractive index change due to other transition states not involved in lasing action. In this paper, the effects of these mechanisms on the LEF of a type-I QC laser are investigated theoretically and experimentally. The optical gain spectrum and the LEF are measured using the Hakki-Paoli method. Device self-heating on the wavelength shift in the Fabry-Perot modes is isolated by measuring the shift of the lasing wavelength above the threshold current. The band structure of a QC laser is calculated by solving the Schro/spl uml/dinger-Poisson equation self-consistently. We use the Gaussian lineshape function for gain change and the confluent hypergeometric function of the first kind for refractive index change, which satisfies the Kramers-Kronig relation. The refractive index change caused by various transition states is calculated by the theoretical model of a type-I QC laser. The calculated LEF shows good agreement with the experimental measurement.
doi_str_mv 10.1109/JQE.2004.837666
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1359974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1359974</ieee_id><sourcerecordid>2427661741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-b140ef7478c6292fd4da05534093dce22e7ab05a255937d029750e62db957feb3</originalsourceid><addsrcrecordid>eNpdkc1r3DAUxEVpoNsk5x5yMYH25l19WtKxhG2bsBACyVlopeeug1d2JJl2__vIdSDQk5D0m-G9GYS-ELwmBOvN3cN2TTHma8Vk0zQf0IoIoWoiCfuIVhgTVWui5Sf0OaXncuVc4RXKjwcYIuTO2b6ywVfwd4TYHSHk8pDy5E_V0FbDuBC_bRf-YX0X4E_n86GCcLDBwayoWuvyEGdBPo1Q31Yvkw15OtbOJmc9VL1NENMFOmttn-Dy7TxHTz-2jze_6t39z9ub77vacSJyvSccQyu5VK6hmraee4uFYBxr5h1QCtLusbBUCM2kx1RLgaGhfq-FbGHPztG3xXeMw8sEKZtjlxz0vQ0wTMlQ1QhVQing9X_g8zDFUGYzSjGtWImrQJsFcnFIKUJrxhKUjSdDsJkrMKUCM1dglgqK4uub7bx-38YSVJfeZQ1VkhJWuKuF6wDg_ZsJrSVnrxnGj-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883983014</pqid></control><display><type>article</type><title>Theoretical and experimental study of optical gain and linewidth enhancement factor of type-I quantum-cascade lasers</title><source>IEEE Electronic Library (IEL)</source><creator>Jungho Kim ; Lerttamrab, M. ; Shun Lien Chuang ; Gmachl, C. ; Sivco, D.L. ; Capasso, F. ; Cho, A.Y.</creator><creatorcontrib>Jungho Kim ; Lerttamrab, M. ; Shun Lien Chuang ; Gmachl, C. ; Sivco, D.L. ; Capasso, F. ; Cho, A.Y.</creatorcontrib><description>A theoretical and experimental study of the optical gain and the linewidth enhancement factor (LEF) of a type-I quantum-cascade (QC) laser is reported. QC lasers have a symmetrical gain spectrum because the optical transition occurs between conduction subbands. According to the Kramers-Kronig relation, a zero LEF is predicted at the gain peak, but there has been no experimental observation of a zero LEF. There are other mechanisms that affect the LEF such as device self-heating, and the refractive index change due to other transition states not involved in lasing action. In this paper, the effects of these mechanisms on the LEF of a type-I QC laser are investigated theoretically and experimentally. The optical gain spectrum and the LEF are measured using the Hakki-Paoli method. Device self-heating on the wavelength shift in the Fabry-Perot modes is isolated by measuring the shift of the lasing wavelength above the threshold current. The band structure of a QC laser is calculated by solving the Schro/spl uml/dinger-Poisson equation self-consistently. We use the Gaussian lineshape function for gain change and the confluent hypergeometric function of the first kind for refractive index change, which satisfies the Kramers-Kronig relation. The refractive index change caused by various transition states is calculated by the theoretical model of a type-I QC laser. The calculated LEF shows good agreement with the experimental measurement.</description><identifier>ISSN: 0018-9197</identifier><identifier>EISSN: 1558-1713</identifier><identifier>DOI: 10.1109/JQE.2004.837666</identifier><identifier>CODEN: IEJQA7</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Design of specific laser systems ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Gain measurement ; Intersubband transition ; Laser modes ; Laser optical systems: design and operation ; Laser theory ; Laser transitions ; Lasers ; linewidth enhancement factor (LEF) ; Optical refraction ; Optical variables control ; Optics ; Physics ; Quantum cascade lasers ; Quantum mechanics ; quantum-cascade (QC) laser ; Refractive index ; Semiconductor lasers; laser diodes ; Wavelength measurement</subject><ispartof>IEEE journal of quantum electronics, 2004-12, Vol.40 (12), p.1663-1674</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-b140ef7478c6292fd4da05534093dce22e7ab05a255937d029750e62db957feb3</citedby><cites>FETCH-LOGICAL-c415t-b140ef7478c6292fd4da05534093dce22e7ab05a255937d029750e62db957feb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1359974$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1359974$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16287213$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jungho Kim</creatorcontrib><creatorcontrib>Lerttamrab, M.</creatorcontrib><creatorcontrib>Shun Lien Chuang</creatorcontrib><creatorcontrib>Gmachl, C.</creatorcontrib><creatorcontrib>Sivco, D.L.</creatorcontrib><creatorcontrib>Capasso, F.</creatorcontrib><creatorcontrib>Cho, A.Y.</creatorcontrib><title>Theoretical and experimental study of optical gain and linewidth enhancement factor of type-I quantum-cascade lasers</title><title>IEEE journal of quantum electronics</title><addtitle>JQE</addtitle><description>A theoretical and experimental study of the optical gain and the linewidth enhancement factor (LEF) of a type-I quantum-cascade (QC) laser is reported. QC lasers have a symmetrical gain spectrum because the optical transition occurs between conduction subbands. According to the Kramers-Kronig relation, a zero LEF is predicted at the gain peak, but there has been no experimental observation of a zero LEF. There are other mechanisms that affect the LEF such as device self-heating, and the refractive index change due to other transition states not involved in lasing action. In this paper, the effects of these mechanisms on the LEF of a type-I QC laser are investigated theoretically and experimentally. The optical gain spectrum and the LEF are measured using the Hakki-Paoli method. Device self-heating on the wavelength shift in the Fabry-Perot modes is isolated by measuring the shift of the lasing wavelength above the threshold current. The band structure of a QC laser is calculated by solving the Schro/spl uml/dinger-Poisson equation self-consistently. We use the Gaussian lineshape function for gain change and the confluent hypergeometric function of the first kind for refractive index change, which satisfies the Kramers-Kronig relation. The refractive index change caused by various transition states is calculated by the theoretical model of a type-I QC laser. The calculated LEF shows good agreement with the experimental measurement.</description><subject>Design of specific laser systems</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Gain measurement</subject><subject>Intersubband transition</subject><subject>Laser modes</subject><subject>Laser optical systems: design and operation</subject><subject>Laser theory</subject><subject>Laser transitions</subject><subject>Lasers</subject><subject>linewidth enhancement factor (LEF)</subject><subject>Optical refraction</subject><subject>Optical variables control</subject><subject>Optics</subject><subject>Physics</subject><subject>Quantum cascade lasers</subject><subject>Quantum mechanics</subject><subject>quantum-cascade (QC) laser</subject><subject>Refractive index</subject><subject>Semiconductor lasers; laser diodes</subject><subject>Wavelength measurement</subject><issn>0018-9197</issn><issn>1558-1713</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkc1r3DAUxEVpoNsk5x5yMYH25l19WtKxhG2bsBACyVlopeeug1d2JJl2__vIdSDQk5D0m-G9GYS-ELwmBOvN3cN2TTHma8Vk0zQf0IoIoWoiCfuIVhgTVWui5Sf0OaXncuVc4RXKjwcYIuTO2b6ywVfwd4TYHSHk8pDy5E_V0FbDuBC_bRf-YX0X4E_n86GCcLDBwayoWuvyEGdBPo1Q31Yvkw15OtbOJmc9VL1NENMFOmttn-Dy7TxHTz-2jze_6t39z9ub77vacSJyvSccQyu5VK6hmraee4uFYBxr5h1QCtLusbBUCM2kx1RLgaGhfq-FbGHPztG3xXeMw8sEKZtjlxz0vQ0wTMlQ1QhVQing9X_g8zDFUGYzSjGtWImrQJsFcnFIKUJrxhKUjSdDsJkrMKUCM1dglgqK4uub7bx-38YSVJfeZQ1VkhJWuKuF6wDg_ZsJrSVnrxnGj-A</recordid><startdate>20041201</startdate><enddate>20041201</enddate><creator>Jungho Kim</creator><creator>Lerttamrab, M.</creator><creator>Shun Lien Chuang</creator><creator>Gmachl, C.</creator><creator>Sivco, D.L.</creator><creator>Capasso, F.</creator><creator>Cho, A.Y.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20041201</creationdate><title>Theoretical and experimental study of optical gain and linewidth enhancement factor of type-I quantum-cascade lasers</title><author>Jungho Kim ; Lerttamrab, M. ; Shun Lien Chuang ; Gmachl, C. ; Sivco, D.L. ; Capasso, F. ; Cho, A.Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-b140ef7478c6292fd4da05534093dce22e7ab05a255937d029750e62db957feb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Design of specific laser systems</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Gain measurement</topic><topic>Intersubband transition</topic><topic>Laser modes</topic><topic>Laser optical systems: design and operation</topic><topic>Laser theory</topic><topic>Laser transitions</topic><topic>Lasers</topic><topic>linewidth enhancement factor (LEF)</topic><topic>Optical refraction</topic><topic>Optical variables control</topic><topic>Optics</topic><topic>Physics</topic><topic>Quantum cascade lasers</topic><topic>Quantum mechanics</topic><topic>quantum-cascade (QC) laser</topic><topic>Refractive index</topic><topic>Semiconductor lasers; laser diodes</topic><topic>Wavelength measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jungho Kim</creatorcontrib><creatorcontrib>Lerttamrab, M.</creatorcontrib><creatorcontrib>Shun Lien Chuang</creatorcontrib><creatorcontrib>Gmachl, C.</creatorcontrib><creatorcontrib>Sivco, D.L.</creatorcontrib><creatorcontrib>Capasso, F.</creatorcontrib><creatorcontrib>Cho, A.Y.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jungho Kim</au><au>Lerttamrab, M.</au><au>Shun Lien Chuang</au><au>Gmachl, C.</au><au>Sivco, D.L.</au><au>Capasso, F.</au><au>Cho, A.Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical and experimental study of optical gain and linewidth enhancement factor of type-I quantum-cascade lasers</atitle><jtitle>IEEE journal of quantum electronics</jtitle><stitle>JQE</stitle><date>2004-12-01</date><risdate>2004</risdate><volume>40</volume><issue>12</issue><spage>1663</spage><epage>1674</epage><pages>1663-1674</pages><issn>0018-9197</issn><eissn>1558-1713</eissn><coden>IEJQA7</coden><abstract>A theoretical and experimental study of the optical gain and the linewidth enhancement factor (LEF) of a type-I quantum-cascade (QC) laser is reported. QC lasers have a symmetrical gain spectrum because the optical transition occurs between conduction subbands. According to the Kramers-Kronig relation, a zero LEF is predicted at the gain peak, but there has been no experimental observation of a zero LEF. There are other mechanisms that affect the LEF such as device self-heating, and the refractive index change due to other transition states not involved in lasing action. In this paper, the effects of these mechanisms on the LEF of a type-I QC laser are investigated theoretically and experimentally. The optical gain spectrum and the LEF are measured using the Hakki-Paoli method. Device self-heating on the wavelength shift in the Fabry-Perot modes is isolated by measuring the shift of the lasing wavelength above the threshold current. The band structure of a QC laser is calculated by solving the Schro/spl uml/dinger-Poisson equation self-consistently. We use the Gaussian lineshape function for gain change and the confluent hypergeometric function of the first kind for refractive index change, which satisfies the Kramers-Kronig relation. The refractive index change caused by various transition states is calculated by the theoretical model of a type-I QC laser. The calculated LEF shows good agreement with the experimental measurement.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JQE.2004.837666</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9197
ispartof IEEE journal of quantum electronics, 2004-12, Vol.40 (12), p.1663-1674
issn 0018-9197
1558-1713
language eng
recordid cdi_ieee_primary_1359974
source IEEE Electronic Library (IEL)
subjects Design of specific laser systems
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Gain measurement
Intersubband transition
Laser modes
Laser optical systems: design and operation
Laser theory
Laser transitions
Lasers
linewidth enhancement factor (LEF)
Optical refraction
Optical variables control
Optics
Physics
Quantum cascade lasers
Quantum mechanics
quantum-cascade (QC) laser
Refractive index
Semiconductor lasers
laser diodes
Wavelength measurement
title Theoretical and experimental study of optical gain and linewidth enhancement factor of type-I quantum-cascade lasers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T22%3A55%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20and%20experimental%20study%20of%20optical%20gain%20and%20linewidth%20enhancement%20factor%20of%20type-I%20quantum-cascade%20lasers&rft.jtitle=IEEE%20journal%20of%20quantum%20electronics&rft.au=Jungho%20Kim&rft.date=2004-12-01&rft.volume=40&rft.issue=12&rft.spage=1663&rft.epage=1674&rft.pages=1663-1674&rft.issn=0018-9197&rft.eissn=1558-1713&rft.coden=IEJQA7&rft_id=info:doi/10.1109/JQE.2004.837666&rft_dat=%3Cproquest_RIE%3E2427661741%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=883983014&rft_id=info:pmid/&rft_ieee_id=1359974&rfr_iscdi=true