Theoretical and experimental study of optical gain and linewidth enhancement factor of type-I quantum-cascade lasers
A theoretical and experimental study of the optical gain and the linewidth enhancement factor (LEF) of a type-I quantum-cascade (QC) laser is reported. QC lasers have a symmetrical gain spectrum because the optical transition occurs between conduction subbands. According to the Kramers-Kronig relati...
Gespeichert in:
Veröffentlicht in: | IEEE journal of quantum electronics 2004-12, Vol.40 (12), p.1663-1674 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A theoretical and experimental study of the optical gain and the linewidth enhancement factor (LEF) of a type-I quantum-cascade (QC) laser is reported. QC lasers have a symmetrical gain spectrum because the optical transition occurs between conduction subbands. According to the Kramers-Kronig relation, a zero LEF is predicted at the gain peak, but there has been no experimental observation of a zero LEF. There are other mechanisms that affect the LEF such as device self-heating, and the refractive index change due to other transition states not involved in lasing action. In this paper, the effects of these mechanisms on the LEF of a type-I QC laser are investigated theoretically and experimentally. The optical gain spectrum and the LEF are measured using the Hakki-Paoli method. Device self-heating on the wavelength shift in the Fabry-Perot modes is isolated by measuring the shift of the lasing wavelength above the threshold current. The band structure of a QC laser is calculated by solving the Schro/spl uml/dinger-Poisson equation self-consistently. We use the Gaussian lineshape function for gain change and the confluent hypergeometric function of the first kind for refractive index change, which satisfies the Kramers-Kronig relation. The refractive index change caused by various transition states is calculated by the theoretical model of a type-I QC laser. The calculated LEF shows good agreement with the experimental measurement. |
---|---|
ISSN: | 0018-9197 1558-1713 |
DOI: | 10.1109/JQE.2004.837666 |