Unlifted loop subdivision wavelets

In this paper, we propose a new wavelet scheme for loop subdivision surfaces. The main idea enabling our wavelet construction is to extend the subdivision rules to be invertible, thus executing each inverse subdivision step in the reverse order makes up the wavelet decomposition rule. As opposed to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Denggao Li, Kaihuai Qin, Hanqiu Sun
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose a new wavelet scheme for loop subdivision surfaces. The main idea enabling our wavelet construction is to extend the subdivision rules to be invertible, thus executing each inverse subdivision step in the reverse order makes up the wavelet decomposition rule. As opposed to other existing wavelet schemes for loop surfaces, which require solving a global sparse linear system in the wavelet analysis process, our wavelet scheme provides efficient (linear time and fully in-place) computations for both forward and backward wavelet transforms. This characteristic makes our wavelet scheme extremely suitable for applications in which the speed for wavelet decomposition is critical. We also describe our strategies for optimizing free parameters in the extended subdivision steps, which are important to the performance of the final wavelet transform. Our method has been proven to be effective, as demonstrated by a number of examples.
ISSN:1550-4085
DOI:10.1109/PCCGA.2004.1348331