Design and evaluation of a network-based architecture for cryptographic devices

This work presents a network-based asynchronous architecture that improves the physical-level security of cryptographic devices to known side-channel attacks. This is achieved by decorrelating power consumption measurements by exploiting parallel execution and randomised data-forwarding over a netwo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dilparic, L., Arvind, D.K.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work presents a network-based asynchronous architecture that improves the physical-level security of cryptographic devices to known side-channel attacks. This is achieved by decorrelating power consumption measurements by exploiting parallel execution and randomised data-forwarding over a network of functional units. Instructions execute in parallel and forward register values between them, thereby avoiding the register bank. A secret-sharing scheme is used in data-forwarding to remove the effect of sending critical register values through the network, which does not significantly degrade performance and has a positive effect of increasing the noise due to network activity. The simulation results show that both the security threshold and the performance are improved, and the network-based architecture is more robust to differential power analysis when compared to the asynchronous pipelined architecture.
ISSN:2160-0511
2160-052X
DOI:10.1109/ASAP.2004.1342470