Recognizing human actions: a local SVM approach

Local space-time features capture local events in video and can be adapted to the size, the frequency and the velocity of moving patterns. In this paper, we demonstrate how such features can be used for recognizing complex motion patterns. We construct video representations in terms of local space-t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Schuldt, C., Laptev, I., Caputo, B.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 36 Vol.3
container_issue
container_start_page 32
container_title
container_volume 3
creator Schuldt, C.
Laptev, I.
Caputo, B.
description Local space-time features capture local events in video and can be adapted to the size, the frequency and the velocity of moving patterns. In this paper, we demonstrate how such features can be used for recognizing complex motion patterns. We construct video representations in terms of local space-time features and integrate such representations with SVM classification schemes for recognition. For the purpose of evaluation we introduce a new video database containing 2391 sequences of six human actions performed by 25 people in four different scenarios. The presented results of action recognition justify the proposed method and demonstrate its advantage compared to other relative approaches for action recognition.
doi_str_mv 10.1109/ICPR.2004.1334462
format Conference Proceeding
fullrecord <record><control><sourceid>swepub_6IE</sourceid><recordid>TN_cdi_ieee_primary_1334462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1334462</ieee_id><sourcerecordid>oai_DiVA_org_kth_44315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-8fada0e55c1898d78448ac47a19bfdee1819cf6171c8ad330b4cdafa699364093</originalsourceid><addsrcrecordid>eNo90MtOg0AYhuGJh0RavQDjhgsQOv-cmHHX1FOTGk3VbsnPMMAoBQI0Rq9ekzauvs2Tb_EScgk0BqBmtly8rGNGqYiBcyEUOyIB0xyiRCTymExoooxkwDQ7IQFQCZFQEs7IZBg-KGWUSx2Q2drZtmz8j2_KsNptsQnRjr5thpsQw7q1WIevm6cQu65v0Vbn5LTAenAXh52S9_u7t8VjtHp-WC7mq8hypsZIF5gjdVJa0EbniRZCoxUJgsmK3DnQYGyhIAGrMeecZsLmWKAyhitBDZ-S6_3v8OW6XZZ2vd9i_5226NNbv5mnbV-mn2OVCsFB_vGrPffOuX986MJ_AZfFVAI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Recognizing human actions: a local SVM approach</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Schuldt, C. ; Laptev, I. ; Caputo, B.</creator><creatorcontrib>Schuldt, C. ; Laptev, I. ; Caputo, B.</creatorcontrib><description>Local space-time features capture local events in video and can be adapted to the size, the frequency and the velocity of moving patterns. In this paper, we demonstrate how such features can be used for recognizing complex motion patterns. We construct video representations in terms of local space-time features and integrate such representations with SVM classification schemes for recognition. For the purpose of evaluation we introduce a new video database containing 2391 sequences of six human actions performed by 25 people in four different scenarios. The presented results of action recognition justify the proposed method and demonstrate its advantage compared to other relative approaches for action recognition.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 0769521282</identifier><identifier>ISBN: 9780769521282</identifier><identifier>EISSN: 2831-7475</identifier><identifier>DOI: 10.1109/ICPR.2004.1334462</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cameras ; Computer vision ; Frequency ; Humans ; Image recognition ; Pattern recognition ; Performance evaluation ; Spatial databases ; Support vector machine classification ; Support vector machines</subject><ispartof>Pattern Recognition: Proceedings, 17th International Conference, Cambridge, UK, 2004., 2004, Vol.3, p.32-36 Vol.3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-8fada0e55c1898d78448ac47a19bfdee1819cf6171c8ad330b4cdafa699364093</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1334462$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,309,310,776,780,785,786,881,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1334462$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-44315$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Schuldt, C.</creatorcontrib><creatorcontrib>Laptev, I.</creatorcontrib><creatorcontrib>Caputo, B.</creatorcontrib><title>Recognizing human actions: a local SVM approach</title><title>Pattern Recognition: Proceedings, 17th International Conference, Cambridge, UK, 2004.</title><addtitle>ICPR</addtitle><description>Local space-time features capture local events in video and can be adapted to the size, the frequency and the velocity of moving patterns. In this paper, we demonstrate how such features can be used for recognizing complex motion patterns. We construct video representations in terms of local space-time features and integrate such representations with SVM classification schemes for recognition. For the purpose of evaluation we introduce a new video database containing 2391 sequences of six human actions performed by 25 people in four different scenarios. The presented results of action recognition justify the proposed method and demonstrate its advantage compared to other relative approaches for action recognition.</description><subject>Cameras</subject><subject>Computer vision</subject><subject>Frequency</subject><subject>Humans</subject><subject>Image recognition</subject><subject>Pattern recognition</subject><subject>Performance evaluation</subject><subject>Spatial databases</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>0769521282</isbn><isbn>9780769521282</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo90MtOg0AYhuGJh0RavQDjhgsQOv-cmHHX1FOTGk3VbsnPMMAoBQI0Rq9ekzauvs2Tb_EScgk0BqBmtly8rGNGqYiBcyEUOyIB0xyiRCTymExoooxkwDQ7IQFQCZFQEs7IZBg-KGWUSx2Q2drZtmz8j2_KsNptsQnRjr5thpsQw7q1WIevm6cQu65v0Vbn5LTAenAXh52S9_u7t8VjtHp-WC7mq8hypsZIF5gjdVJa0EbniRZCoxUJgsmK3DnQYGyhIAGrMeecZsLmWKAyhitBDZ-S6_3v8OW6XZZ2vd9i_5226NNbv5mnbV-mn2OVCsFB_vGrPffOuX986MJ_AZfFVAI</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Schuldt, C.</creator><creator>Laptev, I.</creator><creator>Caputo, B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>ADTPV</scope><scope>BNKNJ</scope><scope>D8V</scope></search><sort><creationdate>2004</creationdate><title>Recognizing human actions: a local SVM approach</title><author>Schuldt, C. ; Laptev, I. ; Caputo, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-8fada0e55c1898d78448ac47a19bfdee1819cf6171c8ad330b4cdafa699364093</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Cameras</topic><topic>Computer vision</topic><topic>Frequency</topic><topic>Humans</topic><topic>Image recognition</topic><topic>Pattern recognition</topic><topic>Performance evaluation</topic><topic>Spatial databases</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Schuldt, C.</creatorcontrib><creatorcontrib>Laptev, I.</creatorcontrib><creatorcontrib>Caputo, B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>SwePub</collection><collection>SwePub Conference</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Schuldt, C.</au><au>Laptev, I.</au><au>Caputo, B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Recognizing human actions: a local SVM approach</atitle><btitle>Pattern Recognition: Proceedings, 17th International Conference, Cambridge, UK, 2004.</btitle><stitle>ICPR</stitle><date>2004</date><risdate>2004</risdate><volume>3</volume><spage>32</spage><epage>36 Vol.3</epage><pages>32-36 Vol.3</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>0769521282</isbn><isbn>9780769521282</isbn><abstract>Local space-time features capture local events in video and can be adapted to the size, the frequency and the velocity of moving patterns. In this paper, we demonstrate how such features can be used for recognizing complex motion patterns. We construct video representations in terms of local space-time features and integrate such representations with SVM classification schemes for recognition. For the purpose of evaluation we introduce a new video database containing 2391 sequences of six human actions performed by 25 people in four different scenarios. The presented results of action recognition justify the proposed method and demonstrate its advantage compared to other relative approaches for action recognition.</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2004.1334462</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-4651
ispartof Pattern Recognition: Proceedings, 17th International Conference, Cambridge, UK, 2004., 2004, Vol.3, p.32-36 Vol.3
issn 1051-4651
2831-7475
language eng
recordid cdi_ieee_primary_1334462
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Cameras
Computer vision
Frequency
Humans
Image recognition
Pattern recognition
Performance evaluation
Spatial databases
Support vector machine classification
Support vector machines
title Recognizing human actions: a local SVM approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T03%3A37%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-swepub_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Recognizing%20human%20actions:%20a%20local%20SVM%20approach&rft.btitle=Pattern%20Recognition:%20Proceedings,%2017th%20International%20Conference,%20Cambridge,%20UK,%202004.&rft.au=Schuldt,%20C.&rft.date=2004&rft.volume=3&rft.spage=32&rft.epage=36%20Vol.3&rft.pages=32-36%20Vol.3&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=0769521282&rft.isbn_list=9780769521282&rft_id=info:doi/10.1109/ICPR.2004.1334462&rft_dat=%3Cswepub_6IE%3Eoai_DiVA_org_kth_44315%3C/swepub_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1334462&rfr_iscdi=true