Recognizing human actions: a local SVM approach

Local space-time features capture local events in video and can be adapted to the size, the frequency and the velocity of moving patterns. In this paper, we demonstrate how such features can be used for recognizing complex motion patterns. We construct video representations in terms of local space-t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Schuldt, C., Laptev, I., Caputo, B.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Local space-time features capture local events in video and can be adapted to the size, the frequency and the velocity of moving patterns. In this paper, we demonstrate how such features can be used for recognizing complex motion patterns. We construct video representations in terms of local space-time features and integrate such representations with SVM classification schemes for recognition. For the purpose of evaluation we introduce a new video database containing 2391 sequences of six human actions performed by 25 people in four different scenarios. The presented results of action recognition justify the proposed method and demonstrate its advantage compared to other relative approaches for action recognition.
ISSN:1051-4651
2831-7475
DOI:10.1109/ICPR.2004.1334462