Reconstructing a dynamic surface from video sequences using graph cuts in 4D space-time
This paper is concerned with the problem of dynamically reconstructing the 3D surface of an object undergoing non-rigid motion. The problem is cast as reconstructing a continuous optimal 3D hyper-surface in 4D space-time from a set of calibrated video sequences. The imaging model of video cameras in...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper is concerned with the problem of dynamically reconstructing the 3D surface of an object undergoing non-rigid motion. The problem is cast as reconstructing a continuous optimal 3D hyper-surface in 4D space-time from a set of calibrated video sequences. The imaging model of video cameras in 4D space-time is derived and a photo-inconsistency cost function is defined for a hyper-surface in the 4D space-time. We use a 4D node-cut algorithm to find a global minimum of the cost function and obtain the corresponding optimal hyper-surface. Experimental results show that the proposed algorithm is effective in recovering continuously changing shapes and exhibits good noise resistance. |
---|---|
ISSN: | 1051-4651 2831-7475 |
DOI: | 10.1109/ICPR.2004.1334145 |