Simulation study of a field emission triode structure using carbon-nanotube emitters
The device level simulation analysis without considering nanometer geometry of the emissive material is carried out on a self-aligned gated field emission triode structure that can be used for low electric-field emissive materials such as carbon nanotubes. The electric properties of the device, such...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nanotechnology 2004-09, Vol.3 (3), p.404-411 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The device level simulation analysis without considering nanometer geometry of the emissive material is carried out on a self-aligned gated field emission triode structure that can be used for low electric-field emissive materials such as carbon nanotubes. The electric properties of the device, such as electric-field distribution, pixel capacitance, and gate controllability, are simulated using a commercially available field solver based on the boundary-element method. The simulation results show that the depletion-mode operation can eliminate high electric field near the triple-junction regions and produce better uniform emission, comparing enhanced mode operation. The detail of the depletion mode operation is discussed. We also calculate the effect of the gate thickness on pixel emission current and suggest control of the variation of gate layer depostion within 3% in short distance and 20%-30% over the whole display area. |
---|---|
ISSN: | 1536-125X 1941-0085 |
DOI: | 10.1109/TNANO.2004.834158 |