AR model parameter estimation: from factor graphs to algorithms
The classic problem of estimating the parameters of an auto-regressive (AR) model is considered from a graphical model viewpoint. A number of practical parameter estimation algorithms - some of them well known, others apparently new - are derived as "summary propagation" in a factor graph....
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 509 |
---|---|
container_issue | |
container_start_page | V |
container_title | |
container_volume | 5 |
creator | Korl, S. Loeliger, H.A. Lindgren, A.G. |
description | The classic problem of estimating the parameters of an auto-regressive (AR) model is considered from a graphical model viewpoint. A number of practical parameter estimation algorithms - some of them well known, others apparently new - are derived as "summary propagation" in a factor graph. In particular, we demonstrate the joint estimation of AR coefficients, innovation variance, and noise variance. |
doi_str_mv | 10.1109/ICASSP.2004.1327159 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_6IE</sourceid><recordid>TN_cdi_ieee_primary_1327159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1327159</ieee_id><sourcerecordid>17610956</sourcerecordid><originalsourceid>FETCH-LOGICAL-i506-482af9f50005aa6955b0d63b18c831df8cca196d3261b5f0c8446ac4de03326c3</originalsourceid><addsrcrecordid>eNpFkEtrwzAQhEUf0DTNL8hFlx7trp6WeikhpA8ItDQ59BY2spS42LGRfOm_ryCFwsLAzsfuMITMGZSMgX14Wy42m4-SA8iSCV4xZS_IhIvKFszC1yWZ2cpAHmGkkfyKTJjiUGgm7Q25TekbAEwlzYQ8LT5p19e-pQNG7PzoI_VpbDocm_70SEPsOxrQjX2kh4jDMdGxp9ge-tiMxy7dkeuAbfKzP52S7fNqu3wt1u8vOeW6aBToQhqOwQaV3ypEbZXaQ63FnhlnBKuDcQ6Z1bXgmu1VAGek1Ohk7UHknRNTcn8-O2By2IaIJ9ek3RBz0PizY5XOtSidufmZa7z3__a5IvELwupXwg</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>AR model parameter estimation: from factor graphs to algorithms</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Korl, S. ; Loeliger, H.A. ; Lindgren, A.G.</creator><creatorcontrib>Korl, S. ; Loeliger, H.A. ; Lindgren, A.G.</creatorcontrib><description>The classic problem of estimating the parameters of an auto-regressive (AR) model is considered from a graphical model viewpoint. A number of practical parameter estimation algorithms - some of them well known, others apparently new - are derived as "summary propagation" in a factor graph. In particular, we demonstrate the joint estimation of AR coefficients, innovation variance, and noise variance.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9780780384842</identifier><identifier>ISBN: 0780384849</identifier><identifier>EISSN: 2379-190X</identifier><identifier>DOI: 10.1109/ICASSP.2004.1327159</identifier><language>eng</language><publisher>Piscataway, N.J: IEEE</publisher><subject>Applied sciences ; Detection, estimation, filtering, equalization, prediction ; Error correction codes ; Exact sciences and technology ; Gaussian noise ; Graphical models ; Information processing ; Information, signal and communications theory ; Laboratories ; Parameter estimation ; Signal and communications theory ; Signal processing ; Signal processing algorithms ; Signal, noise ; State-space methods ; Technological innovation ; Telecommunications and information theory</subject><ispartof>2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2004, Vol.5, p.V-509</ispartof><rights>2006 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1327159$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,4048,4049,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1327159$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17610956$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Korl, S.</creatorcontrib><creatorcontrib>Loeliger, H.A.</creatorcontrib><creatorcontrib>Lindgren, A.G.</creatorcontrib><title>AR model parameter estimation: from factor graphs to algorithms</title><title>2004 IEEE International Conference on Acoustics, Speech, and Signal Processing</title><addtitle>ICASSP</addtitle><description>The classic problem of estimating the parameters of an auto-regressive (AR) model is considered from a graphical model viewpoint. A number of practical parameter estimation algorithms - some of them well known, others apparently new - are derived as "summary propagation" in a factor graph. In particular, we demonstrate the joint estimation of AR coefficients, innovation variance, and noise variance.</description><subject>Applied sciences</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Error correction codes</subject><subject>Exact sciences and technology</subject><subject>Gaussian noise</subject><subject>Graphical models</subject><subject>Information processing</subject><subject>Information, signal and communications theory</subject><subject>Laboratories</subject><subject>Parameter estimation</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal processing algorithms</subject><subject>Signal, noise</subject><subject>State-space methods</subject><subject>Technological innovation</subject><subject>Telecommunications and information theory</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9780780384842</isbn><isbn>0780384849</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkEtrwzAQhEUf0DTNL8hFlx7trp6WeikhpA8ItDQ59BY2spS42LGRfOm_ryCFwsLAzsfuMITMGZSMgX14Wy42m4-SA8iSCV4xZS_IhIvKFszC1yWZ2cpAHmGkkfyKTJjiUGgm7Q25TekbAEwlzYQ8LT5p19e-pQNG7PzoI_VpbDocm_70SEPsOxrQjX2kh4jDMdGxp9ge-tiMxy7dkeuAbfKzP52S7fNqu3wt1u8vOeW6aBToQhqOwQaV3ypEbZXaQ63FnhlnBKuDcQ6Z1bXgmu1VAGek1Ohk7UHknRNTcn8-O2By2IaIJ9ek3RBz0PizY5XOtSidufmZa7z3__a5IvELwupXwg</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Korl, S.</creator><creator>Loeliger, H.A.</creator><creator>Lindgren, A.G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>AR model parameter estimation: from factor graphs to algorithms</title><author>Korl, S. ; Loeliger, H.A. ; Lindgren, A.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i506-482af9f50005aa6955b0d63b18c831df8cca196d3261b5f0c8446ac4de03326c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Error correction codes</topic><topic>Exact sciences and technology</topic><topic>Gaussian noise</topic><topic>Graphical models</topic><topic>Information processing</topic><topic>Information, signal and communications theory</topic><topic>Laboratories</topic><topic>Parameter estimation</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal processing algorithms</topic><topic>Signal, noise</topic><topic>State-space methods</topic><topic>Technological innovation</topic><topic>Telecommunications and information theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Korl, S.</creatorcontrib><creatorcontrib>Loeliger, H.A.</creatorcontrib><creatorcontrib>Lindgren, A.G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Korl, S.</au><au>Loeliger, H.A.</au><au>Lindgren, A.G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>AR model parameter estimation: from factor graphs to algorithms</atitle><btitle>2004 IEEE International Conference on Acoustics, Speech, and Signal Processing</btitle><stitle>ICASSP</stitle><date>2004</date><risdate>2004</risdate><volume>5</volume><spage>V</spage><epage>509</epage><pages>V-509</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9780780384842</isbn><isbn>0780384849</isbn><abstract>The classic problem of estimating the parameters of an auto-regressive (AR) model is considered from a graphical model viewpoint. A number of practical parameter estimation algorithms - some of them well known, others apparently new - are derived as "summary propagation" in a factor graph. In particular, we demonstrate the joint estimation of AR coefficients, innovation variance, and noise variance.</abstract><cop>Piscataway, N.J</cop><pub>IEEE</pub><doi>10.1109/ICASSP.2004.1327159</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-6149 |
ispartof | 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2004, Vol.5, p.V-509 |
issn | 1520-6149 2379-190X |
language | eng |
recordid | cdi_ieee_primary_1327159 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Applied sciences Detection, estimation, filtering, equalization, prediction Error correction codes Exact sciences and technology Gaussian noise Graphical models Information processing Information, signal and communications theory Laboratories Parameter estimation Signal and communications theory Signal processing Signal processing algorithms Signal, noise State-space methods Technological innovation Telecommunications and information theory |
title | AR model parameter estimation: from factor graphs to algorithms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A36%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=AR%20model%20parameter%20estimation:%20from%20factor%20graphs%20to%20algorithms&rft.btitle=2004%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech,%20and%20Signal%20Processing&rft.au=Korl,%20S.&rft.date=2004&rft.volume=5&rft.spage=V&rft.epage=509&rft.pages=V-509&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9780780384842&rft.isbn_list=0780384849&rft_id=info:doi/10.1109/ICASSP.2004.1327159&rft_dat=%3Cpascalfrancis_6IE%3E17610956%3C/pascalfrancis_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1327159&rfr_iscdi=true |