AR model parameter estimation: from factor graphs to algorithms

The classic problem of estimating the parameters of an auto-regressive (AR) model is considered from a graphical model viewpoint. A number of practical parameter estimation algorithms - some of them well known, others apparently new - are derived as "summary propagation" in a factor graph....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Korl, S., Loeliger, H.A., Lindgren, A.G.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 509
container_issue
container_start_page V
container_title
container_volume 5
creator Korl, S.
Loeliger, H.A.
Lindgren, A.G.
description The classic problem of estimating the parameters of an auto-regressive (AR) model is considered from a graphical model viewpoint. A number of practical parameter estimation algorithms - some of them well known, others apparently new - are derived as "summary propagation" in a factor graph. In particular, we demonstrate the joint estimation of AR coefficients, innovation variance, and noise variance.
doi_str_mv 10.1109/ICASSP.2004.1327159
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_6IE</sourceid><recordid>TN_cdi_ieee_primary_1327159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1327159</ieee_id><sourcerecordid>17610956</sourcerecordid><originalsourceid>FETCH-LOGICAL-i506-482af9f50005aa6955b0d63b18c831df8cca196d3261b5f0c8446ac4de03326c3</originalsourceid><addsrcrecordid>eNpFkEtrwzAQhEUf0DTNL8hFlx7trp6WeikhpA8ItDQ59BY2spS42LGRfOm_ryCFwsLAzsfuMITMGZSMgX14Wy42m4-SA8iSCV4xZS_IhIvKFszC1yWZ2cpAHmGkkfyKTJjiUGgm7Q25TekbAEwlzYQ8LT5p19e-pQNG7PzoI_VpbDocm_70SEPsOxrQjX2kh4jDMdGxp9ge-tiMxy7dkeuAbfKzP52S7fNqu3wt1u8vOeW6aBToQhqOwQaV3ypEbZXaQ63FnhlnBKuDcQ6Z1bXgmu1VAGek1Ohk7UHknRNTcn8-O2By2IaIJ9ek3RBz0PizY5XOtSidufmZa7z3__a5IvELwupXwg</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>AR model parameter estimation: from factor graphs to algorithms</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Korl, S. ; Loeliger, H.A. ; Lindgren, A.G.</creator><creatorcontrib>Korl, S. ; Loeliger, H.A. ; Lindgren, A.G.</creatorcontrib><description>The classic problem of estimating the parameters of an auto-regressive (AR) model is considered from a graphical model viewpoint. A number of practical parameter estimation algorithms - some of them well known, others apparently new - are derived as "summary propagation" in a factor graph. In particular, we demonstrate the joint estimation of AR coefficients, innovation variance, and noise variance.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9780780384842</identifier><identifier>ISBN: 0780384849</identifier><identifier>EISSN: 2379-190X</identifier><identifier>DOI: 10.1109/ICASSP.2004.1327159</identifier><language>eng</language><publisher>Piscataway, N.J: IEEE</publisher><subject>Applied sciences ; Detection, estimation, filtering, equalization, prediction ; Error correction codes ; Exact sciences and technology ; Gaussian noise ; Graphical models ; Information processing ; Information, signal and communications theory ; Laboratories ; Parameter estimation ; Signal and communications theory ; Signal processing ; Signal processing algorithms ; Signal, noise ; State-space methods ; Technological innovation ; Telecommunications and information theory</subject><ispartof>2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2004, Vol.5, p.V-509</ispartof><rights>2006 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1327159$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,4048,4049,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1327159$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17610956$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Korl, S.</creatorcontrib><creatorcontrib>Loeliger, H.A.</creatorcontrib><creatorcontrib>Lindgren, A.G.</creatorcontrib><title>AR model parameter estimation: from factor graphs to algorithms</title><title>2004 IEEE International Conference on Acoustics, Speech, and Signal Processing</title><addtitle>ICASSP</addtitle><description>The classic problem of estimating the parameters of an auto-regressive (AR) model is considered from a graphical model viewpoint. A number of practical parameter estimation algorithms - some of them well known, others apparently new - are derived as "summary propagation" in a factor graph. In particular, we demonstrate the joint estimation of AR coefficients, innovation variance, and noise variance.</description><subject>Applied sciences</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Error correction codes</subject><subject>Exact sciences and technology</subject><subject>Gaussian noise</subject><subject>Graphical models</subject><subject>Information processing</subject><subject>Information, signal and communications theory</subject><subject>Laboratories</subject><subject>Parameter estimation</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal processing algorithms</subject><subject>Signal, noise</subject><subject>State-space methods</subject><subject>Technological innovation</subject><subject>Telecommunications and information theory</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9780780384842</isbn><isbn>0780384849</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkEtrwzAQhEUf0DTNL8hFlx7trp6WeikhpA8ItDQ59BY2spS42LGRfOm_ryCFwsLAzsfuMITMGZSMgX14Wy42m4-SA8iSCV4xZS_IhIvKFszC1yWZ2cpAHmGkkfyKTJjiUGgm7Q25TekbAEwlzYQ8LT5p19e-pQNG7PzoI_VpbDocm_70SEPsOxrQjX2kh4jDMdGxp9ge-tiMxy7dkeuAbfKzP52S7fNqu3wt1u8vOeW6aBToQhqOwQaV3ypEbZXaQ63FnhlnBKuDcQ6Z1bXgmu1VAGek1Ohk7UHknRNTcn8-O2By2IaIJ9ek3RBz0PizY5XOtSidufmZa7z3__a5IvELwupXwg</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Korl, S.</creator><creator>Loeliger, H.A.</creator><creator>Lindgren, A.G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>AR model parameter estimation: from factor graphs to algorithms</title><author>Korl, S. ; Loeliger, H.A. ; Lindgren, A.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i506-482af9f50005aa6955b0d63b18c831df8cca196d3261b5f0c8446ac4de03326c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Error correction codes</topic><topic>Exact sciences and technology</topic><topic>Gaussian noise</topic><topic>Graphical models</topic><topic>Information processing</topic><topic>Information, signal and communications theory</topic><topic>Laboratories</topic><topic>Parameter estimation</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal processing algorithms</topic><topic>Signal, noise</topic><topic>State-space methods</topic><topic>Technological innovation</topic><topic>Telecommunications and information theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Korl, S.</creatorcontrib><creatorcontrib>Loeliger, H.A.</creatorcontrib><creatorcontrib>Lindgren, A.G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Korl, S.</au><au>Loeliger, H.A.</au><au>Lindgren, A.G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>AR model parameter estimation: from factor graphs to algorithms</atitle><btitle>2004 IEEE International Conference on Acoustics, Speech, and Signal Processing</btitle><stitle>ICASSP</stitle><date>2004</date><risdate>2004</risdate><volume>5</volume><spage>V</spage><epage>509</epage><pages>V-509</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9780780384842</isbn><isbn>0780384849</isbn><abstract>The classic problem of estimating the parameters of an auto-regressive (AR) model is considered from a graphical model viewpoint. A number of practical parameter estimation algorithms - some of them well known, others apparently new - are derived as "summary propagation" in a factor graph. In particular, we demonstrate the joint estimation of AR coefficients, innovation variance, and noise variance.</abstract><cop>Piscataway, N.J</cop><pub>IEEE</pub><doi>10.1109/ICASSP.2004.1327159</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2004, Vol.5, p.V-509
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_1327159
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Applied sciences
Detection, estimation, filtering, equalization, prediction
Error correction codes
Exact sciences and technology
Gaussian noise
Graphical models
Information processing
Information, signal and communications theory
Laboratories
Parameter estimation
Signal and communications theory
Signal processing
Signal processing algorithms
Signal, noise
State-space methods
Technological innovation
Telecommunications and information theory
title AR model parameter estimation: from factor graphs to algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A36%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=AR%20model%20parameter%20estimation:%20from%20factor%20graphs%20to%20algorithms&rft.btitle=2004%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech,%20and%20Signal%20Processing&rft.au=Korl,%20S.&rft.date=2004&rft.volume=5&rft.spage=V&rft.epage=509&rft.pages=V-509&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9780780384842&rft.isbn_list=0780384849&rft_id=info:doi/10.1109/ICASSP.2004.1327159&rft_dat=%3Cpascalfrancis_6IE%3E17610956%3C/pascalfrancis_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1327159&rfr_iscdi=true