AR model parameter estimation: from factor graphs to algorithms

The classic problem of estimating the parameters of an auto-regressive (AR) model is considered from a graphical model viewpoint. A number of practical parameter estimation algorithms - some of them well known, others apparently new - are derived as "summary propagation" in a factor graph....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Korl, S., Loeliger, H.A., Lindgren, A.G.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The classic problem of estimating the parameters of an auto-regressive (AR) model is considered from a graphical model viewpoint. A number of practical parameter estimation algorithms - some of them well known, others apparently new - are derived as "summary propagation" in a factor graph. In particular, we demonstrate the joint estimation of AR coefficients, innovation variance, and noise variance.
ISSN:1520-6149
2379-190X
DOI:10.1109/ICASSP.2004.1327159