AR model parameter estimation: from factor graphs to algorithms
The classic problem of estimating the parameters of an auto-regressive (AR) model is considered from a graphical model viewpoint. A number of practical parameter estimation algorithms - some of them well known, others apparently new - are derived as "summary propagation" in a factor graph....
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The classic problem of estimating the parameters of an auto-regressive (AR) model is considered from a graphical model viewpoint. A number of practical parameter estimation algorithms - some of them well known, others apparently new - are derived as "summary propagation" in a factor graph. In particular, we demonstrate the joint estimation of AR coefficients, innovation variance, and noise variance. |
---|---|
ISSN: | 1520-6149 2379-190X |
DOI: | 10.1109/ICASSP.2004.1327159 |