Testing stability of 2-D discrete systems by a set of real 1-D stability tests

Stability of a two-dimensional (2-D) discrete system depends on whether a bivariate polynomial does not vanish in the closed exterior of the unit bi-circle. The paper shows a procedure that tests this 2-D stability condition by testing the stability of a finite collection of real univariate polynomi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. 1, Fundamental theory and applications Fundamental theory and applications, 2004-07, Vol.51 (7), p.1312-1320
1. Verfasser: Bistritz, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Stability of a two-dimensional (2-D) discrete system depends on whether a bivariate polynomial does not vanish in the closed exterior of the unit bi-circle. The paper shows a procedure that tests this 2-D stability condition by testing the stability of a finite collection of real univariate polynomials by a certain modified form of the author's one-dimensional (1-D) stability test. The new procedure is obtained by telepolation (interpolation) of a 2-D tabular test whose derivation was confined to using a real form of the underlying 1-D stability test. Consequently, unlike previous telepolation-based tests, the procedure requires the testing of real instead of complex univariate polynomials. The proposed test is the least-cost procedure to test 2-D stability with real polynomial 1-D stability tests and real arithmetic only.
ISSN:1549-8328
1057-7122
1558-0806
DOI:10.1109/TCSI.2004.830679