RatSLAM: a hippocampal model for simultaneous localization and mapping
The work presents a new approach to the problem of simultaneous localization and mapping - SLAM - inspired by computational models of the hippocampus of rodents. The rodent hippocampus has been extensively studied with respect to navigation tasks, and displays many of the properties of a desirable S...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The work presents a new approach to the problem of simultaneous localization and mapping - SLAM - inspired by computational models of the hippocampus of rodents. The rodent hippocampus has been extensively studied with respect to navigation tasks, and displays many of the properties of a desirable SLAM solution. RatSLAM is an implementation of a hippocampal model that can perform SLAM in real time on a real robot. It uses a competitive attractor network to integrate odometric information with landmark sensing to form a consistent representation of the environment. Experimental results show that RatSLAM can operate with ambiguous landmark information and recover from both minor and major path integration errors. |
---|---|
ISSN: | 1050-4729 2577-087X |
DOI: | 10.1109/ROBOT.2004.1307183 |