An evolution strategy with probabilistic mutation for multi-objective optimisation
Evolutionary algorithms have been applied with great success to the difficult field of multiobjective optimisation. Nevertheless, the need for improvements in this field is still strong. We present a new evolutionary algorithm, ESP (the Evolution Strategy with Probabilistic mutation). ESP extends tr...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Evolutionary algorithms have been applied with great success to the difficult field of multiobjective optimisation. Nevertheless, the need for improvements in this field is still strong. We present a new evolutionary algorithm, ESP (the Evolution Strategy with Probabilistic mutation). ESP extends traditional evolution strategies in two principal ways: it applies mutation probabilistically in a GA-like fashion, and it uses a new hyper-volume based, parameterless, scaling independent measure for resolving ties during the selection process. ESP outperforms the state-of-the-art algorithms on a suite of benchmark multiobjective test functions using a range of popular metrics. |
---|---|
DOI: | 10.1109/CEC.2003.1299373 |