An evolution strategy with probabilistic mutation for multi-objective optimisation

Evolutionary algorithms have been applied with great success to the difficult field of multiobjective optimisation. Nevertheless, the need for improvements in this field is still strong. We present a new evolutionary algorithm, ESP (the Evolution Strategy with Probabilistic mutation). ESP extends tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Huband, S., Hingston, P., While, L., Barone, L.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Evolutionary algorithms have been applied with great success to the difficult field of multiobjective optimisation. Nevertheless, the need for improvements in this field is still strong. We present a new evolutionary algorithm, ESP (the Evolution Strategy with Probabilistic mutation). ESP extends traditional evolution strategies in two principal ways: it applies mutation probabilistically in a GA-like fashion, and it uses a new hyper-volume based, parameterless, scaling independent measure for resolving ties during the selection process. ESP outperforms the state-of-the-art algorithms on a suite of benchmark multiobjective test functions using a range of popular metrics.
DOI:10.1109/CEC.2003.1299373