Cryomodule design for the Rare Isotope Accelerator

The Rare Isotope Accelerator (RIA) driver linac will produce >400 MeV/u proton through uranium beams using many types of superconducting accelerating cavities such as quarter wave, spoke, and elliptical cavities. A cryomodule design that can accommodate all of the superconducting cavity and magne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Grimm, T.L., Hartung, W., Johnson, M., York, R.C., Kneisel, P., Turlington, L.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Rare Isotope Accelerator (RIA) driver linac will produce >400 MeV/u proton through uranium beams using many types of superconducting accelerating cavities such as quarter wave, spoke, and elliptical cavities. A cryomodule design that can accommodate all of the superconducting cavity and magnet types is presented. Alignment of the cold mass uses a titanium rail system, which minimizes cryomodule size, and decreases both the tunnel cross-section and length. The titanium rail is supported from the top vacuum plate by an adjustable tri-link, which is similar to existing Michigan State University magnet technology. A prototype cryomodule is under construction for testing 805 MHz, v/c=0.47, six-cell niobium cavities in realistic operating conditions. Details of the design and progress to date are presented.
ISSN:1063-3928
2152-9647
DOI:10.1109/PAC.2003.1289702