Material synthesis routes for thin film bonding interfaces in reworkable and bumpless nano-interconnects

This work explores novel material synthesis routes towards reworkable nano-dimensional interfaces for IC-package assembly, leading to bumpless and nano interconnections. Reworkability is addressed by a thin interface of lead-free high-strength solders. Two approaches, sol-gel process and electroless...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Aggarwal, A.O., Raj, P.M., Abothu, I.R., Ravi, D., Sacks, M.D., Tay, A.A.O., Tummala, R.R.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work explores novel material synthesis routes towards reworkable nano-dimensional interfaces for IC-package assembly, leading to bumpless and nano interconnections. Reworkability is addressed by a thin interface of lead-free high-strength solders. Two approaches, sol-gel process and electroless plating, were used to achieve these nano-dimensional bonding interfaces. In the sol-gel process, metal-organic polymer solutions were heat-treated in a reducing atmosphere at 400/spl deg/C to form lead-free solders (Sn-Ag-Cu). In the electroless plating approach, lead-free alloy films were deposited from aqueous plating solutions consisting of suitable metal salts and reducing agents. This process was done at a temperature of 45/spl deg/C. The lead-free solder composition was controlled by altering the plating bath formulation. Solder films formed from both the above approaches were demonstrated to bond copper pads. Solution-derived nano-solder technology is an attractive low-cost method for bumpless nano-interconnects and other applications such as MEMS hermetic packaging and compliant interconnect bonding.
DOI:10.1109/ISAPM.2004.1287991