Partial-update NLMS algorithms with data-selective updating

In this paper, we present mean-squared convergence analysis for the partial-update normalized least-mean square (PU-NLMS) algorithm with closed-form expressions for the case of white input signals. The formulae presented here are more accurate than the ones found in the literature for the PU-NLMS al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2004-04, Vol.52 (4), p.938-949
Hauptverfasser: Werner, S., de Campos, M.L.R., Diniz, P.S.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 949
container_issue 4
container_start_page 938
container_title IEEE transactions on signal processing
container_volume 52
creator Werner, S.
de Campos, M.L.R.
Diniz, P.S.R.
description In this paper, we present mean-squared convergence analysis for the partial-update normalized least-mean square (PU-NLMS) algorithm with closed-form expressions for the case of white input signals. The formulae presented here are more accurate than the ones found in the literature for the PU-NLMS algorithm. Thereafter, the ideas of the partial-update NLMS-type algorithms found in the literature are incorporated in the framework of set-membership filtering, from which data-selective NLMS-type algorithms with partial-update are derived. The new algorithms, referred to herein as the set-membership partial-update normalized least-mean square (SM-PU-NLMS) algorithms, combine the data-selective updating from set-membership filtering with the reduced computational complexity from partial updating. A thorough discussion of the SM-PU-NLMS algorithms follows, whereby we propose different update strategies and provide stability analysis and closed-form formulae for excess mean-squared error (MSE). Simulation results verify the analysis for the PU-NLMS algorithm and the good performance of the SM-PU-NLMS algorithms in terms of convergence speed, final misadjustment, and computational complexity.
doi_str_mv 10.1109/TSP.2004.823483
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1275668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1275668</ieee_id><sourcerecordid>2426538341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-277bd7647486b88f95b04c6c5a105f63a56c6d70028c64f5eb236bb5f52c814d3</originalsourceid><addsrcrecordid>eNp9kEtLAzEQgBdRsFbPHrwsgnraNs9JgicpvqBqoRW8hWyarVu23ZrsKv57U1soePA0A_PN60uSU4x6GCPVn4xHPYIQ60lCmaR7SQcrhjPEBOzHHHGacSneDpOjEOYIYcYUdJLrkfFNaaqsXU1N49Ln4dM4NdWs9mXzvgjpVwxprJgsuMrZpvx06S9aLmfHyUFhquBOtrGbvN7dTgYP2fDl_nFwM8wsFarJiBD5VAATTEIuZaF4jpgFy008qgBqOFiYCoSItMAK7nJCIc95wYmVmE1pN7nazF35-qN1odGLMlhXVWbp6jZoqQArIhWJ5OW_JJE8bkEygud_wHnd-mX8QktJgURrKEL9DWR9HYJ3hV75cmH8t8ZIr53r6FyvneuN89hxsR1rgjVV4c3SlmHXxrkEBRC5sw1XOud2ZSI4gKQ_UtmH9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883620470</pqid></control><display><type>article</type><title>Partial-update NLMS algorithms with data-selective updating</title><source>IEEE Electronic Library (IEL)</source><creator>Werner, S. ; de Campos, M.L.R. ; Diniz, P.S.R.</creator><creatorcontrib>Werner, S. ; de Campos, M.L.R. ; Diniz, P.S.R.</creatorcontrib><description>In this paper, we present mean-squared convergence analysis for the partial-update normalized least-mean square (PU-NLMS) algorithm with closed-form expressions for the case of white input signals. The formulae presented here are more accurate than the ones found in the literature for the PU-NLMS algorithm. Thereafter, the ideas of the partial-update NLMS-type algorithms found in the literature are incorporated in the framework of set-membership filtering, from which data-selective NLMS-type algorithms with partial-update are derived. The new algorithms, referred to herein as the set-membership partial-update normalized least-mean square (SM-PU-NLMS) algorithms, combine the data-selective updating from set-membership filtering with the reduced computational complexity from partial updating. A thorough discussion of the SM-PU-NLMS algorithms follows, whereby we propose different update strategies and provide stability analysis and closed-form formulae for excess mean-squared error (MSE). Simulation results verify the analysis for the PU-NLMS algorithm and the good performance of the SM-PU-NLMS algorithms in terms of convergence speed, final misadjustment, and computational complexity.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2004.823483</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Analytical models ; Applied sciences ; Closed-form solution ; Complexity ; Computation ; Computational complexity ; Computational modeling ; Convergence ; Detection, estimation, filtering, equalization, prediction ; Error correction ; Exact sciences and technology ; Exact solutions ; Filtering ; Filtering algorithms ; Filtration ; Information, signal and communications theory ; Mathematical analysis ; Signal analysis ; Signal and communications theory ; Signal, noise ; Stability analysis ; Studies ; Telecommunications and information theory</subject><ispartof>IEEE transactions on signal processing, 2004-04, Vol.52 (4), p.938-949</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-277bd7647486b88f95b04c6c5a105f63a56c6d70028c64f5eb236bb5f52c814d3</citedby><cites>FETCH-LOGICAL-c379t-277bd7647486b88f95b04c6c5a105f63a56c6d70028c64f5eb236bb5f52c814d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1275668$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1275668$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15586966$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Werner, S.</creatorcontrib><creatorcontrib>de Campos, M.L.R.</creatorcontrib><creatorcontrib>Diniz, P.S.R.</creatorcontrib><title>Partial-update NLMS algorithms with data-selective updating</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>In this paper, we present mean-squared convergence analysis for the partial-update normalized least-mean square (PU-NLMS) algorithm with closed-form expressions for the case of white input signals. The formulae presented here are more accurate than the ones found in the literature for the PU-NLMS algorithm. Thereafter, the ideas of the partial-update NLMS-type algorithms found in the literature are incorporated in the framework of set-membership filtering, from which data-selective NLMS-type algorithms with partial-update are derived. The new algorithms, referred to herein as the set-membership partial-update normalized least-mean square (SM-PU-NLMS) algorithms, combine the data-selective updating from set-membership filtering with the reduced computational complexity from partial updating. A thorough discussion of the SM-PU-NLMS algorithms follows, whereby we propose different update strategies and provide stability analysis and closed-form formulae for excess mean-squared error (MSE). Simulation results verify the analysis for the PU-NLMS algorithm and the good performance of the SM-PU-NLMS algorithms in terms of convergence speed, final misadjustment, and computational complexity.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Analytical models</subject><subject>Applied sciences</subject><subject>Closed-form solution</subject><subject>Complexity</subject><subject>Computation</subject><subject>Computational complexity</subject><subject>Computational modeling</subject><subject>Convergence</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Error correction</subject><subject>Exact sciences and technology</subject><subject>Exact solutions</subject><subject>Filtering</subject><subject>Filtering algorithms</subject><subject>Filtration</subject><subject>Information, signal and communications theory</subject><subject>Mathematical analysis</subject><subject>Signal analysis</subject><subject>Signal and communications theory</subject><subject>Signal, noise</subject><subject>Stability analysis</subject><subject>Studies</subject><subject>Telecommunications and information theory</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kEtLAzEQgBdRsFbPHrwsgnraNs9JgicpvqBqoRW8hWyarVu23ZrsKv57U1soePA0A_PN60uSU4x6GCPVn4xHPYIQ60lCmaR7SQcrhjPEBOzHHHGacSneDpOjEOYIYcYUdJLrkfFNaaqsXU1N49Ln4dM4NdWs9mXzvgjpVwxprJgsuMrZpvx06S9aLmfHyUFhquBOtrGbvN7dTgYP2fDl_nFwM8wsFarJiBD5VAATTEIuZaF4jpgFy008qgBqOFiYCoSItMAK7nJCIc95wYmVmE1pN7nazF35-qN1odGLMlhXVWbp6jZoqQArIhWJ5OW_JJE8bkEygud_wHnd-mX8QktJgURrKEL9DWR9HYJ3hV75cmH8t8ZIr53r6FyvneuN89hxsR1rgjVV4c3SlmHXxrkEBRC5sw1XOud2ZSI4gKQ_UtmH9Q</recordid><startdate>20040401</startdate><enddate>20040401</enddate><creator>Werner, S.</creator><creator>de Campos, M.L.R.</creator><creator>Diniz, P.S.R.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20040401</creationdate><title>Partial-update NLMS algorithms with data-selective updating</title><author>Werner, S. ; de Campos, M.L.R. ; Diniz, P.S.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-277bd7647486b88f95b04c6c5a105f63a56c6d70028c64f5eb236bb5f52c814d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Analytical models</topic><topic>Applied sciences</topic><topic>Closed-form solution</topic><topic>Complexity</topic><topic>Computation</topic><topic>Computational complexity</topic><topic>Computational modeling</topic><topic>Convergence</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Error correction</topic><topic>Exact sciences and technology</topic><topic>Exact solutions</topic><topic>Filtering</topic><topic>Filtering algorithms</topic><topic>Filtration</topic><topic>Information, signal and communications theory</topic><topic>Mathematical analysis</topic><topic>Signal analysis</topic><topic>Signal and communications theory</topic><topic>Signal, noise</topic><topic>Stability analysis</topic><topic>Studies</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Werner, S.</creatorcontrib><creatorcontrib>de Campos, M.L.R.</creatorcontrib><creatorcontrib>Diniz, P.S.R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Werner, S.</au><au>de Campos, M.L.R.</au><au>Diniz, P.S.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Partial-update NLMS algorithms with data-selective updating</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2004-04-01</date><risdate>2004</risdate><volume>52</volume><issue>4</issue><spage>938</spage><epage>949</epage><pages>938-949</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>In this paper, we present mean-squared convergence analysis for the partial-update normalized least-mean square (PU-NLMS) algorithm with closed-form expressions for the case of white input signals. The formulae presented here are more accurate than the ones found in the literature for the PU-NLMS algorithm. Thereafter, the ideas of the partial-update NLMS-type algorithms found in the literature are incorporated in the framework of set-membership filtering, from which data-selective NLMS-type algorithms with partial-update are derived. The new algorithms, referred to herein as the set-membership partial-update normalized least-mean square (SM-PU-NLMS) algorithms, combine the data-selective updating from set-membership filtering with the reduced computational complexity from partial updating. A thorough discussion of the SM-PU-NLMS algorithms follows, whereby we propose different update strategies and provide stability analysis and closed-form formulae for excess mean-squared error (MSE). Simulation results verify the analysis for the PU-NLMS algorithm and the good performance of the SM-PU-NLMS algorithms in terms of convergence speed, final misadjustment, and computational complexity.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2004.823483</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2004-04, Vol.52 (4), p.938-949
issn 1053-587X
1941-0476
language eng
recordid cdi_ieee_primary_1275668
source IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
Algorithms
Analytical models
Applied sciences
Closed-form solution
Complexity
Computation
Computational complexity
Computational modeling
Convergence
Detection, estimation, filtering, equalization, prediction
Error correction
Exact sciences and technology
Exact solutions
Filtering
Filtering algorithms
Filtration
Information, signal and communications theory
Mathematical analysis
Signal analysis
Signal and communications theory
Signal, noise
Stability analysis
Studies
Telecommunications and information theory
title Partial-update NLMS algorithms with data-selective updating
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A25%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Partial-update%20NLMS%20algorithms%20with%20data-selective%20updating&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Werner,%20S.&rft.date=2004-04-01&rft.volume=52&rft.issue=4&rft.spage=938&rft.epage=949&rft.pages=938-949&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2004.823483&rft_dat=%3Cproquest_RIE%3E2426538341%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=883620470&rft_id=info:pmid/&rft_ieee_id=1275668&rfr_iscdi=true