Partial-update NLMS algorithms with data-selective updating

In this paper, we present mean-squared convergence analysis for the partial-update normalized least-mean square (PU-NLMS) algorithm with closed-form expressions for the case of white input signals. The formulae presented here are more accurate than the ones found in the literature for the PU-NLMS al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2004-04, Vol.52 (4), p.938-949
Hauptverfasser: Werner, S., de Campos, M.L.R., Diniz, P.S.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we present mean-squared convergence analysis for the partial-update normalized least-mean square (PU-NLMS) algorithm with closed-form expressions for the case of white input signals. The formulae presented here are more accurate than the ones found in the literature for the PU-NLMS algorithm. Thereafter, the ideas of the partial-update NLMS-type algorithms found in the literature are incorporated in the framework of set-membership filtering, from which data-selective NLMS-type algorithms with partial-update are derived. The new algorithms, referred to herein as the set-membership partial-update normalized least-mean square (SM-PU-NLMS) algorithms, combine the data-selective updating from set-membership filtering with the reduced computational complexity from partial updating. A thorough discussion of the SM-PU-NLMS algorithms follows, whereby we propose different update strategies and provide stability analysis and closed-form formulae for excess mean-squared error (MSE). Simulation results verify the analysis for the PU-NLMS algorithm and the good performance of the SM-PU-NLMS algorithms in terms of convergence speed, final misadjustment, and computational complexity.
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2004.823483