Partial-update NLMS algorithms with data-selective updating
In this paper, we present mean-squared convergence analysis for the partial-update normalized least-mean square (PU-NLMS) algorithm with closed-form expressions for the case of white input signals. The formulae presented here are more accurate than the ones found in the literature for the PU-NLMS al...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2004-04, Vol.52 (4), p.938-949 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we present mean-squared convergence analysis for the partial-update normalized least-mean square (PU-NLMS) algorithm with closed-form expressions for the case of white input signals. The formulae presented here are more accurate than the ones found in the literature for the PU-NLMS algorithm. Thereafter, the ideas of the partial-update NLMS-type algorithms found in the literature are incorporated in the framework of set-membership filtering, from which data-selective NLMS-type algorithms with partial-update are derived. The new algorithms, referred to herein as the set-membership partial-update normalized least-mean square (SM-PU-NLMS) algorithms, combine the data-selective updating from set-membership filtering with the reduced computational complexity from partial updating. A thorough discussion of the SM-PU-NLMS algorithms follows, whereby we propose different update strategies and provide stability analysis and closed-form formulae for excess mean-squared error (MSE). Simulation results verify the analysis for the PU-NLMS algorithm and the good performance of the SM-PU-NLMS algorithms in terms of convergence speed, final misadjustment, and computational complexity. |
---|---|
ISSN: | 1053-587X 1941-0476 |
DOI: | 10.1109/TSP.2004.823483 |