A note on density model size testing
Let (F/sub k/)/sub k/spl ges/1/ be a nested family of parametric classes of densities with finite Vapnik-Chervonenkis dimension. Let f be a probability density belonging to F/sub k//sup */, where k/sup */ is the unknown smallest integer such that f/spl isin/F/sub k/. Given a random sample X/sub 1/,....
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2004-03, Vol.50 (3), p.576-581 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let (F/sub k/)/sub k/spl ges/1/ be a nested family of parametric classes of densities with finite Vapnik-Chervonenkis dimension. Let f be a probability density belonging to F/sub k//sup */, where k/sup */ is the unknown smallest integer such that f/spl isin/F/sub k/. Given a random sample X/sub 1/,...,X/sub n/ drawn from f, an integer k/sub 0//spl ges/1 and a real number /spl alpha//spl isin/(0,1), we introduce a new, simple, explicit /spl alpha/-level consistent testing procedure of the null hypothesis {H/sub 0/:k/sup */=k/sub 0/} versus the alternative {H/sub 1/:k/sup *//spl ne/k/sub 0/}. Our method is inspired by the combinatorial tools developed in Devroye and Lugosi and it includes a wide range of density models, such as mixture models, neural networks, or exponential families. |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.2004.825250 |