Why transition coding for power minimization of on-chip buses does not work
Encoding techniques which minimize the self- or coupling activity of buses are often proposed to reduce power dissipation on system buses. In this paper, we investigate the efficiency of several coding schemes for on-chip buses with respect to overall power dissipation. The power of the codec system...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Encoding techniques which minimize the self- or coupling activity of buses are often proposed to reduce power dissipation on system buses. In this paper, we investigate the efficiency of several coding schemes for on-chip buses with respect to overall power dissipation. The power of the codec systems was estimated by power simulations with the lay-outs and related to the savings on the bus. We derived an expression for the energy efficiency of the codecs as a function of bus length (capacitive load). Despite the fact that adaptive schemes could obtain up to 40% savings, the bus lengths required to reduce the overall power consumption are not realistic for on-chip buses. |
---|---|
ISSN: | 1530-1591 1558-1101 |
DOI: | 10.1109/DATE.2004.1268897 |