Fast k-nearest neighbor classification using cluster-based trees

Most fast k-nearest neighbor (k-NN) algorithms exploit metric properties of distance measures for reducing computation cost and a few can work effectively on both metric and nonmetric measures. We propose a cluster-based tree algorithm to accelerate k-NN classification without any presuppositions ab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2004-04, Vol.26 (4), p.525-528
Hauptverfasser: Bin Zhang, Srihari, S.N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Most fast k-nearest neighbor (k-NN) algorithms exploit metric properties of distance measures for reducing computation cost and a few can work effectively on both metric and nonmetric measures. We propose a cluster-based tree algorithm to accelerate k-NN classification without any presuppositions about the metric form and properties of a dissimilarity measure. A mechanism of early decision making and minimal side-operations for choosing searching paths largely contribute to the efficiency of the algorithm. The algorithm is evaluated through extensive experiments over standard NIST and MNIST databases.
ISSN:0162-8828
1939-3539
DOI:10.1109/TPAMI.2004.1265868