Characterization of boron and phosphorus surface contamination in high current ion implantation

Both implant equipment vendors and semiconductor manufacturers expend significant resources to reduce cross-species surface contamination. Equipment vendors continually refine their implanter designs to this end, while chipmakers may utilize in situ processes to sputter-clean beamline and process ch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bernstein, J.D., Alvarez, A.W., Benton, E.B., Cherukuri, K.C., Otten, C.M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Both implant equipment vendors and semiconductor manufacturers expend significant resources to reduce cross-species surface contamination. Equipment vendors continually refine their implanter designs to this end, while chipmakers may utilize in situ processes to sputter-clean beamline and process chamber surfaces during a dopant species change. This paper investigates the effectiveness of ion beam sputter processes to reduce boron and phosphorus cross-contamination. Results are compared for as-implanted wafers, and wafers that receive a post-implant plasma ash and wet clean. Additionally, device wafers are processed with varying levels of surface contamination at source-drain extension implant in order to evaluate the effects on transistor parameters.
DOI:10.1109/IIT.2002.1257967