Nickel vs. cobalt silicide integration for sub-50nm CMOS
In this work, NiSi SALICIDE has been fully integrated with sub-50 nm gate length transistors and compared to its CoSi/sub 2/ counterpart. Nickel thickness has been reduced to target the CoSi/sub 2/ sheet resistance. It was found that NiSi layers basic lattice planes with vertical orientation are oft...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, NiSi SALICIDE has been fully integrated with sub-50 nm gate length transistors and compared to its CoSi/sub 2/ counterpart. Nickel thickness has been reduced to target the CoSi/sub 2/ sheet resistance. It was found that NiSi layers basic lattice planes with vertical orientation are often observed inside the grains. NiSi-based CMOS transistors show the same performance as CoSi2-transistors, but nickel can also silicide very narrow poly lines whereas cobalt can not. Moreover, NiSi reduces the STI diode-leakage perimeter, but increases channel side leakage, where CoSi/sub 2/ shows a "Schottky behavior". Thus we show that nickel allow MOS transistor scaling for future technology. |
---|---|
DOI: | 10.1109/ESSDERC.2003.1256852 |