Derivation of passage-time densities in PEPA models using ipc: the imperial PEPA compiler
A technique for defining and extracting passage-time densities from high-level stochastic process algebra models is presented. Our high-level formalism is PEPA, a popular Markovian process algebra for expressing compositional performance models. We introduce ipc, a tool which can process PEPA-specif...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A technique for defining and extracting passage-time densities from high-level stochastic process algebra models is presented. Our high-level formalism is PEPA, a popular Markovian process algebra for expressing compositional performance models. We introduce ipc, a tool which can process PEPA-specified passage-time densities and models by compiling the PEPA model and passage specification into the DNAmaca formalism. DNAmaca is an established modelling language for the low-level specification of very large Markov and semiMarkov chains. We provide performance results for ipc/DNAmaca and comparisons with another tool which supports PEPA, PRISM. Finally, we generate passage-time densities and quantiles for a case study of a high-availability Web server. |
---|---|
ISSN: | 1526-7539 2375-0227 |
DOI: | 10.1109/MASCOT.2003.1240679 |