Charge control of parallel-plate, electrostatic actuators and the tip-in instability

Controlling the charge, rather than the voltage, on a parallel-plate, electrostatic actuator theoretically permits stable operation for all deflections. Practically, we show that, using charge control, the maximum stable deflection is limited by 1) charge pull-in, in which the actuator snaps due to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of microelectromechanical systems 2003-10, Vol.12 (5), p.656-671
Hauptverfasser: Seeger, J.I., Boser, B.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Controlling the charge, rather than the voltage, on a parallel-plate, electrostatic actuator theoretically permits stable operation for all deflections. Practically, we show that, using charge control, the maximum stable deflection is limited by 1) charge pull-in, in which the actuator snaps due to the presence of parasitic capacitance and 2) tip-in, in which the rotation mode becomes unstable. This work presents a circuit that controls the amount of charge on a parallel-plate, electrostatic actuator. This circuit reduces the sensitivity to parasitic capacitance, so that tip-in is the limiting instability. A small-signal model of the actuator is developed and used to determine the circuit bandwidth and gain requirements for stable deflections. Four different parallel-plate actuators have been designed and tested to verify the charge control technique as well as to verify charge pull-in, tip-in, and the bandwidth requirements. One design travels 83% of the gap before tip-in. Another design can only travel 20% of the gap before tip-in, regardless of whether voltage control or charge control is used.
ISSN:1057-7157
1941-0158
DOI:10.1109/JMEMS.2003.818455