Common design techniques for BEI GyroChip quartz rate sensors for both automotive and aerospace/defense markets

In the early 1990s, Systron Donner Inertial Division (SDID), a subsidiary of BEI Technologies, Inc., possessed a new solid-state rate gyroscope technology that had not yet matured or captured a significant market share. Even though some success had been achieved in defense missile applications, a st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2003-10, Vol.3 (5), p.569-578
Hauptverfasser: Madni, A.M., Costlow, L.E., Knowles, S.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 578
container_issue 5
container_start_page 569
container_title IEEE sensors journal
container_volume 3
creator Madni, A.M.
Costlow, L.E.
Knowles, S.J.
description In the early 1990s, Systron Donner Inertial Division (SDID), a subsidiary of BEI Technologies, Inc., possessed a new solid-state rate gyroscope technology that had not yet matured or captured a significant market share. Even though some success had been achieved in defense missile applications, a strategy was clearly needed to further develop the technology and lay the foundation for future growth. The strategy search led to discovery of a leading edge automotive brake system application, which, in turn, led to a radical change in design and manufacturing approaches, as well as a dramatic increase in revenues. The resultant radical cost-reduction of quartz rate sensor (QRS) components has benefit for both the automotive and the aerospace and defense (A&D) applications. Commonality of design and design techniques is leveraging high-volume, low-cost automotive components into low-volume A&D products.
doi_str_mv 10.1109/JSEN.2003.817728
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1234893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1234893</ieee_id><sourcerecordid>2428772131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-58c2839cd726681d39eb6409ba4052b1331a6093071eb062eeb1afd34d0565b63</originalsourceid><addsrcrecordid>eNqNkc1rFEEQxQdRMEbvgpdGULzMpvq7-2iWNUaCHlTw1vT01LgTd6Y33T1C_OudcQIBD-KpCur3Ct57VfWcwoZSsGcfPu8-bhgA3xiqNTMPqhMqpampFubhsnOoBdffHldPcr4GoFZLfVLFbRyGOJIWc_99JAXDfuxvJsyki4mc7y7JxW2K231_JDeTT-UXSb4gyTjmmFaoiWVP_FTiEEv_E4kfW-IxxXz0Ac9a7GYWyeDTDyz5afWo84eMz-7mafX13e7L9n199enicvv2qg5CQamlCcxwG1rNlDK05RYbJcA2XoBkDeWcegWWg6bYgGKIDfVdy0ULUslG8dPq9fr3mOJip7ihzwEPBz9inLJjxlgFjP0HyJiyf8A3_wSp0pRLrq2c0Zd_oddxSuPs1xkjGJuzFzMEKxTmqHLCzh1TP6d06yi4pVK3VOqWSt1a6Sx5dffX5-APXfJj6PO9TlLFlFzMv1i5HhHvz4wLYzn_DZDhqTE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884221974</pqid></control><display><type>article</type><title>Common design techniques for BEI GyroChip quartz rate sensors for both automotive and aerospace/defense markets</title><source>IEEE Xplore</source><creator>Madni, A.M. ; Costlow, L.E. ; Knowles, S.J.</creator><creatorcontrib>Madni, A.M. ; Costlow, L.E. ; Knowles, S.J.</creatorcontrib><description>In the early 1990s, Systron Donner Inertial Division (SDID), a subsidiary of BEI Technologies, Inc., possessed a new solid-state rate gyroscope technology that had not yet matured or captured a significant market share. Even though some success had been achieved in defense missile applications, a strategy was clearly needed to further develop the technology and lay the foundation for future growth. The strategy search led to discovery of a leading edge automotive brake system application, which, in turn, led to a radical change in design and manufacturing approaches, as well as a dramatic increase in revenues. The resultant radical cost-reduction of quartz rate sensor (QRS) components has benefit for both the automotive and the aerospace and defense (A&amp;D) applications. Commonality of design and design techniques is leveraging high-volume, low-cost automotive components into low-volume A&amp;D products.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2003.817728</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Aerospace engineering ; Aircraft components ; Applied sciences ; Automotive components ; Automotive engineering ; Defense programs ; Design engineering ; Electronics ; Exact sciences and technology ; General equipment and techniques ; Gyroscopes ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Manufacturing ; Markets ; Micro- and nanoelectromechanical devices (mems/nems) ; Missiles ; Oscillators ; Physics ; Production ; Quartz ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Sensor systems ; Sensors ; Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing ; Space vehicles ; Strategy ; Vectors</subject><ispartof>IEEE sensors journal, 2003-10, Vol.3 (5), p.569-578</ispartof><rights>2003 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-58c2839cd726681d39eb6409ba4052b1331a6093071eb062eeb1afd34d0565b63</citedby><cites>FETCH-LOGICAL-c460t-58c2839cd726681d39eb6409ba4052b1331a6093071eb062eeb1afd34d0565b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1234893$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1234893$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15162656$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Madni, A.M.</creatorcontrib><creatorcontrib>Costlow, L.E.</creatorcontrib><creatorcontrib>Knowles, S.J.</creatorcontrib><title>Common design techniques for BEI GyroChip quartz rate sensors for both automotive and aerospace/defense markets</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>In the early 1990s, Systron Donner Inertial Division (SDID), a subsidiary of BEI Technologies, Inc., possessed a new solid-state rate gyroscope technology that had not yet matured or captured a significant market share. Even though some success had been achieved in defense missile applications, a strategy was clearly needed to further develop the technology and lay the foundation for future growth. The strategy search led to discovery of a leading edge automotive brake system application, which, in turn, led to a radical change in design and manufacturing approaches, as well as a dramatic increase in revenues. The resultant radical cost-reduction of quartz rate sensor (QRS) components has benefit for both the automotive and the aerospace and defense (A&amp;D) applications. Commonality of design and design techniques is leveraging high-volume, low-cost automotive components into low-volume A&amp;D products.</description><subject>Aerospace engineering</subject><subject>Aircraft components</subject><subject>Applied sciences</subject><subject>Automotive components</subject><subject>Automotive engineering</subject><subject>Defense programs</subject><subject>Design engineering</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>General equipment and techniques</subject><subject>Gyroscopes</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Manufacturing</subject><subject>Markets</subject><subject>Micro- and nanoelectromechanical devices (mems/nems)</subject><subject>Missiles</subject><subject>Oscillators</subject><subject>Physics</subject><subject>Production</subject><subject>Quartz</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Sensor systems</subject><subject>Sensors</subject><subject>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</subject><subject>Space vehicles</subject><subject>Strategy</subject><subject>Vectors</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqNkc1rFEEQxQdRMEbvgpdGULzMpvq7-2iWNUaCHlTw1vT01LgTd6Y33T1C_OudcQIBD-KpCur3Ct57VfWcwoZSsGcfPu8-bhgA3xiqNTMPqhMqpampFubhsnOoBdffHldPcr4GoFZLfVLFbRyGOJIWc_99JAXDfuxvJsyki4mc7y7JxW2K231_JDeTT-UXSb4gyTjmmFaoiWVP_FTiEEv_E4kfW-IxxXz0Ac9a7GYWyeDTDyz5afWo84eMz-7mafX13e7L9n199enicvv2qg5CQamlCcxwG1rNlDK05RYbJcA2XoBkDeWcegWWg6bYgGKIDfVdy0ULUslG8dPq9fr3mOJip7ihzwEPBz9inLJjxlgFjP0HyJiyf8A3_wSp0pRLrq2c0Zd_oddxSuPs1xkjGJuzFzMEKxTmqHLCzh1TP6d06yi4pVK3VOqWSt1a6Sx5dffX5-APXfJj6PO9TlLFlFzMv1i5HhHvz4wLYzn_DZDhqTE</recordid><startdate>20031001</startdate><enddate>20031001</enddate><creator>Madni, A.M.</creator><creator>Costlow, L.E.</creator><creator>Knowles, S.J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope></search><sort><creationdate>20031001</creationdate><title>Common design techniques for BEI GyroChip quartz rate sensors for both automotive and aerospace/defense markets</title><author>Madni, A.M. ; Costlow, L.E. ; Knowles, S.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-58c2839cd726681d39eb6409ba4052b1331a6093071eb062eeb1afd34d0565b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Aerospace engineering</topic><topic>Aircraft components</topic><topic>Applied sciences</topic><topic>Automotive components</topic><topic>Automotive engineering</topic><topic>Defense programs</topic><topic>Design engineering</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>General equipment and techniques</topic><topic>Gyroscopes</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Manufacturing</topic><topic>Markets</topic><topic>Micro- and nanoelectromechanical devices (mems/nems)</topic><topic>Missiles</topic><topic>Oscillators</topic><topic>Physics</topic><topic>Production</topic><topic>Quartz</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Sensor systems</topic><topic>Sensors</topic><topic>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</topic><topic>Space vehicles</topic><topic>Strategy</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Madni, A.M.</creatorcontrib><creatorcontrib>Costlow, L.E.</creatorcontrib><creatorcontrib>Knowles, S.J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Madni, A.M.</au><au>Costlow, L.E.</au><au>Knowles, S.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Common design techniques for BEI GyroChip quartz rate sensors for both automotive and aerospace/defense markets</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2003-10-01</date><risdate>2003</risdate><volume>3</volume><issue>5</issue><spage>569</spage><epage>578</epage><pages>569-578</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>In the early 1990s, Systron Donner Inertial Division (SDID), a subsidiary of BEI Technologies, Inc., possessed a new solid-state rate gyroscope technology that had not yet matured or captured a significant market share. Even though some success had been achieved in defense missile applications, a strategy was clearly needed to further develop the technology and lay the foundation for future growth. The strategy search led to discovery of a leading edge automotive brake system application, which, in turn, led to a radical change in design and manufacturing approaches, as well as a dramatic increase in revenues. The resultant radical cost-reduction of quartz rate sensor (QRS) components has benefit for both the automotive and the aerospace and defense (A&amp;D) applications. Commonality of design and design techniques is leveraging high-volume, low-cost automotive components into low-volume A&amp;D products.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JSEN.2003.817728</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2003-10, Vol.3 (5), p.569-578
issn 1530-437X
1558-1748
language eng
recordid cdi_ieee_primary_1234893
source IEEE Xplore
subjects Aerospace engineering
Aircraft components
Applied sciences
Automotive components
Automotive engineering
Defense programs
Design engineering
Electronics
Exact sciences and technology
General equipment and techniques
Gyroscopes
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Manufacturing
Markets
Micro- and nanoelectromechanical devices (mems/nems)
Missiles
Oscillators
Physics
Production
Quartz
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Sensor systems
Sensors
Sensors (chemical, optical, electrical, movement, gas, etc.)
remote sensing
Space vehicles
Strategy
Vectors
title Common design techniques for BEI GyroChip quartz rate sensors for both automotive and aerospace/defense markets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A01%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Common%20design%20techniques%20for%20BEI%20GyroChip%20quartz%20rate%20sensors%20for%20both%20automotive%20and%20aerospace/defense%20markets&rft.jtitle=IEEE%20sensors%20journal&rft.au=Madni,%20A.M.&rft.date=2003-10-01&rft.volume=3&rft.issue=5&rft.spage=569&rft.epage=578&rft.pages=569-578&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2003.817728&rft_dat=%3Cproquest_RIE%3E2428772131%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884221974&rft_id=info:pmid/&rft_ieee_id=1234893&rfr_iscdi=true