Common design techniques for BEI GyroChip quartz rate sensors for both automotive and aerospace/defense markets
In the early 1990s, Systron Donner Inertial Division (SDID), a subsidiary of BEI Technologies, Inc., possessed a new solid-state rate gyroscope technology that had not yet matured or captured a significant market share. Even though some success had been achieved in defense missile applications, a st...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2003-10, Vol.3 (5), p.569-578 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the early 1990s, Systron Donner Inertial Division (SDID), a subsidiary of BEI Technologies, Inc., possessed a new solid-state rate gyroscope technology that had not yet matured or captured a significant market share. Even though some success had been achieved in defense missile applications, a strategy was clearly needed to further develop the technology and lay the foundation for future growth. The strategy search led to discovery of a leading edge automotive brake system application, which, in turn, led to a radical change in design and manufacturing approaches, as well as a dramatic increase in revenues. The resultant radical cost-reduction of quartz rate sensor (QRS) components has benefit for both the automotive and the aerospace and defense (A&D) applications. Commonality of design and design techniques is leveraging high-volume, low-cost automotive components into low-volume A&D products. |
---|---|
ISSN: | 1530-437X 1558-1748 |
DOI: | 10.1109/JSEN.2003.817728 |