A semi-custom voltage-island technique and its application to high-speed serial links [CMOS active power reduction]

Supply-voltage reduction is a known technique for reducing CMOS active power. We propose a semi-custom voltage-island approach based on internal regulation and selective custom design. This approach enables transparent embedding, since no additional external power supply is needed. We apply the appr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Carballo, J.-A., Burns, J.L., Seung-Moon Yoo, Vo, I., Norman, V.R.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Supply-voltage reduction is a known technique for reducing CMOS active power. We propose a semi-custom voltage-island approach based on internal regulation and selective custom design. This approach enables transparent embedding, since no additional external power supply is needed. We apply the approach to high-speed serial links, and we show that high performance is retained through targeted application of custom circuit and logic design. A chip is presented that evaluates the presented approach on a 3000 gate 3.2 Gbps multi-protocol serial-link receiver logic core. When reducing the supply from 1.2 V to 0.95 V, the chip demonstrates power savings of over 25%.
DOI:10.1109/LPE.2003.1231836