Automatic worst case pattern generation using neural networks & genetic algorithm for estimation of switching noise on power supply lines in CMOS circuits
In our approach, we use ATE (automatic test equipment) to teach a neural network (NN) to correctly classify a set of worst case input patterns with respect to the maximum instantaneous current. This can be thought of as learning a behavior of chip power consumption change due to different input patt...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 110 |
---|---|
container_issue | |
container_start_page | 105 |
container_title | |
container_volume | |
creator | Liau, E. Schmitt-Landsiedel, D. |
description | In our approach, we use ATE (automatic test equipment) to teach a neural network (NN) to correctly classify a set of worst case input patterns with respect to the maximum instantaneous current. This can be thought of as learning a behavior of chip power consumption change due to different input patterns applied. We then further optimize this set of (NN) worst case patterns using a genetic algorithm (GA). The final set of worst case patterns can efficiently identify a defective or weakness due to power supply noise as well as locate the defect or weakness within the design. To the best of our knowledge, this is the first NN learning and GA self-optimization ATE-based approach for practical application in silicon analysis automation. Our practical experimental results demonstrate the enlarged fault coverage obtained with this approach. |
doi_str_mv | 10.1109/ETW.2003.1231676 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1231676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1231676</ieee_id><sourcerecordid>1231676</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-fe079500103cb5eccf7cdecfb521270e951ea0c686b60a007d8f6f5c053f6a593</originalsourceid><addsrcrecordid>eNotkEtrAjEUhUMfULXdF7rJqruxN5MmmVmK2AdYXNTSpcR4o2nHyZBkEP9Kf23Hx-rAPec7XA4h9wyGjEH5NJl_D3MAPmQ5Z1LJC9JjQhQZUwVckj4oWQpWQsGvDgaHjBVK3ZB-jD8dJZ9L1iN_ozb5rU7O0J0PMVGjI9JGp4ShpmusMXSmr2kbXb2mNbZBV52kLv0b6eMxcqB1tfbBpc2WWh8oxuS2J9BbGncumc2R966r766N32GgsW2aak8rV2Okrqbjj9knNS6Y1qV4S66triLenXVAvl4m8_FbNp29vo9H08wxJVJmEVQpABhwsxRojFVmhcYuRc5yBdhtgBqMLORSggZQq8JKKwwIbqUWJR-Qh1OvQ8RFE7rHw35x3pT_A87cbQM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Automatic worst case pattern generation using neural networks & genetic algorithm for estimation of switching noise on power supply lines in CMOS circuits</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Liau, E. ; Schmitt-Landsiedel, D.</creator><creatorcontrib>Liau, E. ; Schmitt-Landsiedel, D.</creatorcontrib><description>In our approach, we use ATE (automatic test equipment) to teach a neural network (NN) to correctly classify a set of worst case input patterns with respect to the maximum instantaneous current. This can be thought of as learning a behavior of chip power consumption change due to different input patterns applied. We then further optimize this set of (NN) worst case patterns using a genetic algorithm (GA). The final set of worst case patterns can efficiently identify a defective or weakness due to power supply noise as well as locate the defect or weakness within the design. To the best of our knowledge, this is the first NN learning and GA self-optimization ATE-based approach for practical application in silicon analysis automation. Our practical experimental results demonstrate the enlarged fault coverage obtained with this approach.</description><identifier>ISSN: 1530-1877</identifier><identifier>ISBN: 0769519083</identifier><identifier>ISBN: 9780769519081</identifier><identifier>EISSN: 1558-1780</identifier><identifier>DOI: 10.1109/ETW.2003.1231676</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automatic test equipment ; Circuit noise ; Energy consumption ; Genetic algorithms ; Neural networks ; Noise generators ; Power generation ; Power supplies ; Silicon ; Switching circuits</subject><ispartof>The Eighth IEEE European Test Workshop, 2003. Proceedings, 2003, p.105-110</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1231676$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1231676$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liau, E.</creatorcontrib><creatorcontrib>Schmitt-Landsiedel, D.</creatorcontrib><title>Automatic worst case pattern generation using neural networks & genetic algorithm for estimation of switching noise on power supply lines in CMOS circuits</title><title>The Eighth IEEE European Test Workshop, 2003. Proceedings</title><addtitle>ETW</addtitle><description>In our approach, we use ATE (automatic test equipment) to teach a neural network (NN) to correctly classify a set of worst case input patterns with respect to the maximum instantaneous current. This can be thought of as learning a behavior of chip power consumption change due to different input patterns applied. We then further optimize this set of (NN) worst case patterns using a genetic algorithm (GA). The final set of worst case patterns can efficiently identify a defective or weakness due to power supply noise as well as locate the defect or weakness within the design. To the best of our knowledge, this is the first NN learning and GA self-optimization ATE-based approach for practical application in silicon analysis automation. Our practical experimental results demonstrate the enlarged fault coverage obtained with this approach.</description><subject>Automatic test equipment</subject><subject>Circuit noise</subject><subject>Energy consumption</subject><subject>Genetic algorithms</subject><subject>Neural networks</subject><subject>Noise generators</subject><subject>Power generation</subject><subject>Power supplies</subject><subject>Silicon</subject><subject>Switching circuits</subject><issn>1530-1877</issn><issn>1558-1780</issn><isbn>0769519083</isbn><isbn>9780769519081</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2003</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkEtrAjEUhUMfULXdF7rJqruxN5MmmVmK2AdYXNTSpcR4o2nHyZBkEP9Kf23Hx-rAPec7XA4h9wyGjEH5NJl_D3MAPmQ5Z1LJC9JjQhQZUwVckj4oWQpWQsGvDgaHjBVK3ZB-jD8dJZ9L1iN_ozb5rU7O0J0PMVGjI9JGp4ShpmusMXSmr2kbXb2mNbZBV52kLv0b6eMxcqB1tfbBpc2WWh8oxuS2J9BbGncumc2R966r766N32GgsW2aak8rV2Okrqbjj9knNS6Y1qV4S66triLenXVAvl4m8_FbNp29vo9H08wxJVJmEVQpABhwsxRojFVmhcYuRc5yBdhtgBqMLORSggZQq8JKKwwIbqUWJR-Qh1OvQ8RFE7rHw35x3pT_A87cbQM</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Liau, E.</creator><creator>Schmitt-Landsiedel, D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2003</creationdate><title>Automatic worst case pattern generation using neural networks & genetic algorithm for estimation of switching noise on power supply lines in CMOS circuits</title><author>Liau, E. ; Schmitt-Landsiedel, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-fe079500103cb5eccf7cdecfb521270e951ea0c686b60a007d8f6f5c053f6a593</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Automatic test equipment</topic><topic>Circuit noise</topic><topic>Energy consumption</topic><topic>Genetic algorithms</topic><topic>Neural networks</topic><topic>Noise generators</topic><topic>Power generation</topic><topic>Power supplies</topic><topic>Silicon</topic><topic>Switching circuits</topic><toplevel>online_resources</toplevel><creatorcontrib>Liau, E.</creatorcontrib><creatorcontrib>Schmitt-Landsiedel, D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liau, E.</au><au>Schmitt-Landsiedel, D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Automatic worst case pattern generation using neural networks & genetic algorithm for estimation of switching noise on power supply lines in CMOS circuits</atitle><btitle>The Eighth IEEE European Test Workshop, 2003. Proceedings</btitle><stitle>ETW</stitle><date>2003</date><risdate>2003</risdate><spage>105</spage><epage>110</epage><pages>105-110</pages><issn>1530-1877</issn><eissn>1558-1780</eissn><isbn>0769519083</isbn><isbn>9780769519081</isbn><abstract>In our approach, we use ATE (automatic test equipment) to teach a neural network (NN) to correctly classify a set of worst case input patterns with respect to the maximum instantaneous current. This can be thought of as learning a behavior of chip power consumption change due to different input patterns applied. We then further optimize this set of (NN) worst case patterns using a genetic algorithm (GA). The final set of worst case patterns can efficiently identify a defective or weakness due to power supply noise as well as locate the defect or weakness within the design. To the best of our knowledge, this is the first NN learning and GA self-optimization ATE-based approach for practical application in silicon analysis automation. Our practical experimental results demonstrate the enlarged fault coverage obtained with this approach.</abstract><pub>IEEE</pub><doi>10.1109/ETW.2003.1231676</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-1877 |
ispartof | The Eighth IEEE European Test Workshop, 2003. Proceedings, 2003, p.105-110 |
issn | 1530-1877 1558-1780 |
language | eng |
recordid | cdi_ieee_primary_1231676 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Automatic test equipment Circuit noise Energy consumption Genetic algorithms Neural networks Noise generators Power generation Power supplies Silicon Switching circuits |
title | Automatic worst case pattern generation using neural networks & genetic algorithm for estimation of switching noise on power supply lines in CMOS circuits |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T07%3A41%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Automatic%20worst%20case%20pattern%20generation%20using%20neural%20networks%20&%20genetic%20algorithm%20for%20estimation%20of%20switching%20noise%20on%20power%20supply%20lines%20in%20CMOS%20circuits&rft.btitle=The%20Eighth%20IEEE%20European%20Test%20Workshop,%202003.%20Proceedings&rft.au=Liau,%20E.&rft.date=2003&rft.spage=105&rft.epage=110&rft.pages=105-110&rft.issn=1530-1877&rft.eissn=1558-1780&rft.isbn=0769519083&rft.isbn_list=9780769519081&rft_id=info:doi/10.1109/ETW.2003.1231676&rft_dat=%3Cieee_6IE%3E1231676%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1231676&rfr_iscdi=true |