An adaptive spatial fuzzy clustering algorithm for 3-D MR image segmentation
An adaptive spatial fuzzy c-means clustering algorithm is presented in this paper for the segmentation of three-dimensional (3-D) magnetic resonance (MR) images. The input images may be corrupted by noise and intensity nonuniformity (INU) artifact. The proposed algorithm takes into account the spati...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on medical imaging 2003-09, Vol.22 (9), p.1063-1075 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An adaptive spatial fuzzy c-means clustering algorithm is presented in this paper for the segmentation of three-dimensional (3-D) magnetic resonance (MR) images. The input images may be corrupted by noise and intensity nonuniformity (INU) artifact. The proposed algorithm takes into account the spatial continuity constraints by using a dissimilarity index that allows spatial interactions between image voxels. The local spatial continuity constraint reduces the noise effect and the classification ambiguity. The INU artifact is formulated as a multiplicative bias field affecting the true MR imaging signal. By modeling the log bias field as a stack of smoothing B-spline surfaces, with continuity enforced across slices, the computation of the 3-D bias field reduces to that of finding the B-spline coefficients, which can be obtained using a computationally efficient two-stage algorithm. The efficacy of the proposed algorithm is demonstrated by extensive segmentation experiments using both simulated and real MR images and by comparison with other published algorithms. |
---|---|
ISSN: | 0278-0062 1558-254X |
DOI: | 10.1109/TMI.2003.816956 |