An adaptive spatial fuzzy clustering algorithm for 3-D MR image segmentation

An adaptive spatial fuzzy c-means clustering algorithm is presented in this paper for the segmentation of three-dimensional (3-D) magnetic resonance (MR) images. The input images may be corrupted by noise and intensity nonuniformity (INU) artifact. The proposed algorithm takes into account the spati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2003-09, Vol.22 (9), p.1063-1075
Hauptverfasser: Liew, A.W.C., Hong Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An adaptive spatial fuzzy c-means clustering algorithm is presented in this paper for the segmentation of three-dimensional (3-D) magnetic resonance (MR) images. The input images may be corrupted by noise and intensity nonuniformity (INU) artifact. The proposed algorithm takes into account the spatial continuity constraints by using a dissimilarity index that allows spatial interactions between image voxels. The local spatial continuity constraint reduces the noise effect and the classification ambiguity. The INU artifact is formulated as a multiplicative bias field affecting the true MR imaging signal. By modeling the log bias field as a stack of smoothing B-spline surfaces, with continuity enforced across slices, the computation of the 3-D bias field reduces to that of finding the B-spline coefficients, which can be obtained using a computationally efficient two-stage algorithm. The efficacy of the proposed algorithm is demonstrated by extensive segmentation experiments using both simulated and real MR images and by comparison with other published algorithms.
ISSN:0278-0062
1558-254X
DOI:10.1109/TMI.2003.816956