A new approach to automatic speech summarization

This paper proposes a new automatic speech summarization method. In this method, a set of words maximizing a summarization score is extracted from automatically transcribed speech. This extraction is performed according to a target compression ratio using a dynamic programming (DP) technique. The ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on multimedia 2003-09, Vol.5 (3), p.368-378
Hauptverfasser: Hori, C., Furui, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a new automatic speech summarization method. In this method, a set of words maximizing a summarization score is extracted from automatically transcribed speech. This extraction is performed according to a target compression ratio using a dynamic programming (DP) technique. The extracted set of words is then connected to build a summarization sentence. The summarization score consists of a word significance measure, a confidence measure, linguistic likelihood, and a word concatenation probability. The word concatenation score is determined by a dependency structure in the original speech given by stochastic dependency context free grammar (SDCFG). Japanese broadcast news speech transcribed using a large-vocabulary continuous-speech recognition (LVCSR) system is summarized using our proposed method and compared with manual summarization by human subjects. The manual summarization results are combined to build a word network. This word network is used to calculate the word accuracy of each automatic summarization result using the most similar word string in the network. Experimental results show that the proposed method effectively extracts relatively important information by removing redundant and irrelevant information.
ISSN:1520-9210
1941-0077
DOI:10.1109/TMM.2003.813274