A new design method for the complex-valued multistate Hopfield associative memory

A method to store each element of an integral memory set M /spl sub/ {1,2,...,K}/sup n/ as a fixed point into a complex-valued multistate Hopfield network is introduced. The method employs a set of inequalities to render each memory pattern as a strict local minimum of a quadratic energy landscape....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2003-07, Vol.14 (4), p.891-899
Hauptverfasser: Muezzinoglu, M.K., Guzelis, C., Zurada, J.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 899
container_issue 4
container_start_page 891
container_title IEEE transaction on neural networks and learning systems
container_volume 14
creator Muezzinoglu, M.K.
Guzelis, C.
Zurada, J.M.
description A method to store each element of an integral memory set M /spl sub/ {1,2,...,K}/sup n/ as a fixed point into a complex-valued multistate Hopfield network is introduced. The method employs a set of inequalities to render each memory pattern as a strict local minimum of a quadratic energy landscape. Based on the solution of this system, it gives a recurrent network of n multistate neurons with complex and symmetric synaptic weights, which operates on the finite state space {1,2,...,K}/sup n/ to minimize this quadratic functional. Maximum number of integral vectors that can be embedded into the energy landscape of the network by this method is investigated by computer experiments. This paper also enlightens the performance of the proposed method in reconstructing noisy gray-scale images.
doi_str_mv 10.1109/TNN.2003.813844
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1215405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1215405</ieee_id><sourcerecordid>734249460</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-58712f633f4c875181da6fea9d4af4593feb09700db556665468602ff15ef3e23</originalsourceid><addsrcrecordid>eNqF0c9rFTEQB_Agiq3VswdBggc97etMfudYitpCaSnUc8jbndgtuy_PzW61_31T3oOCBz1lIJ8ZmPky9h5hhQj--ObyciUA5MqhdEq9YIfoFTYAXr6sNSjdeCHsAXtTyh0AKg3mNTtAJ6QD4w7Z9Qnf0G_eUel_bvhI823ueMoTn2-Jt3ncDvSnuY_DQh0fl2Huyxxn4md5m3oaOh5LyW0f5_6eaveYp4e37FWKQ6F3-_eI_fj29eb0rLm4-n5-enLRtMrC3GhnUSQjZVKtsxoddtEkir5TMSntZaI1eAvQrbU2xmhlnAGREmpKkoQ8Yl92c7dT_rVQmcPYl5aGIW4oLyV4QIto5f-llUoorwxU-fmfUjhljXemwk9_wbu8TJu6b_ACnPH1zhUd71A75VImSmE79WOcHgJCeIov1PjCU3xhF1_t-Lgfu6xH6p79Pq8KPuxAT0TP3wK1Ai0fAQMdnHM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920869506</pqid></control><display><type>article</type><title>A new design method for the complex-valued multistate Hopfield associative memory</title><source>IEEE Electronic Library (IEL)</source><creator>Muezzinoglu, M.K. ; Guzelis, C. ; Zurada, J.M.</creator><creatorcontrib>Muezzinoglu, M.K. ; Guzelis, C. ; Zurada, J.M.</creatorcontrib><description>A method to store each element of an integral memory set M /spl sub/ {1,2,...,K}/sup n/ as a fixed point into a complex-valued multistate Hopfield network is introduced. The method employs a set of inequalities to render each memory pattern as a strict local minimum of a quadratic energy landscape. Based on the solution of this system, it gives a recurrent network of n multistate neurons with complex and symmetric synaptic weights, which operates on the finite state space {1,2,...,K}/sup n/ to minimize this quadratic functional. Maximum number of integral vectors that can be embedded into the energy landscape of the network by this method is investigated by computer experiments. This paper also enlightens the performance of the proposed method in reconstructing noisy gray-scale images.</description><identifier>ISSN: 1045-9227</identifier><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 1941-0093</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNN.2003.813844</identifier><identifier>PMID: 18238068</identifier><identifier>CODEN: ITNNEP</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Associative memory ; Computational intelligence ; Computer networks ; Design methodology ; Gray-scale ; Integrals ; Laboratories ; Landscapes ; Mathematical analysis ; Networks ; Neural networks ; Neurons ; Recurrent neural networks ; State-space methods ; Stores ; Vectors</subject><ispartof>IEEE transaction on neural networks and learning systems, 2003-07, Vol.14 (4), p.891-899</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-58712f633f4c875181da6fea9d4af4593feb09700db556665468602ff15ef3e23</citedby><cites>FETCH-LOGICAL-c470t-58712f633f4c875181da6fea9d4af4593feb09700db556665468602ff15ef3e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1215405$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1215405$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18238068$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Muezzinoglu, M.K.</creatorcontrib><creatorcontrib>Guzelis, C.</creatorcontrib><creatorcontrib>Zurada, J.M.</creatorcontrib><title>A new design method for the complex-valued multistate Hopfield associative memory</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNN</addtitle><addtitle>IEEE Trans Neural Netw</addtitle><description>A method to store each element of an integral memory set M /spl sub/ {1,2,...,K}/sup n/ as a fixed point into a complex-valued multistate Hopfield network is introduced. The method employs a set of inequalities to render each memory pattern as a strict local minimum of a quadratic energy landscape. Based on the solution of this system, it gives a recurrent network of n multistate neurons with complex and symmetric synaptic weights, which operates on the finite state space {1,2,...,K}/sup n/ to minimize this quadratic functional. Maximum number of integral vectors that can be embedded into the energy landscape of the network by this method is investigated by computer experiments. This paper also enlightens the performance of the proposed method in reconstructing noisy gray-scale images.</description><subject>Associative memory</subject><subject>Computational intelligence</subject><subject>Computer networks</subject><subject>Design methodology</subject><subject>Gray-scale</subject><subject>Integrals</subject><subject>Laboratories</subject><subject>Landscapes</subject><subject>Mathematical analysis</subject><subject>Networks</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Recurrent neural networks</subject><subject>State-space methods</subject><subject>Stores</subject><subject>Vectors</subject><issn>1045-9227</issn><issn>2162-237X</issn><issn>1941-0093</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0c9rFTEQB_Agiq3VswdBggc97etMfudYitpCaSnUc8jbndgtuy_PzW61_31T3oOCBz1lIJ8ZmPky9h5hhQj--ObyciUA5MqhdEq9YIfoFTYAXr6sNSjdeCHsAXtTyh0AKg3mNTtAJ6QD4w7Z9Qnf0G_eUel_bvhI823ueMoTn2-Jt3ncDvSnuY_DQh0fl2Huyxxn4md5m3oaOh5LyW0f5_6eaveYp4e37FWKQ6F3-_eI_fj29eb0rLm4-n5-enLRtMrC3GhnUSQjZVKtsxoddtEkir5TMSntZaI1eAvQrbU2xmhlnAGREmpKkoQ8Yl92c7dT_rVQmcPYl5aGIW4oLyV4QIto5f-llUoorwxU-fmfUjhljXemwk9_wbu8TJu6b_ACnPH1zhUd71A75VImSmE79WOcHgJCeIov1PjCU3xhF1_t-Lgfu6xH6p79Pq8KPuxAT0TP3wK1Ai0fAQMdnHM</recordid><startdate>20030701</startdate><enddate>20030701</enddate><creator>Muezzinoglu, M.K.</creator><creator>Guzelis, C.</creator><creator>Zurada, J.M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20030701</creationdate><title>A new design method for the complex-valued multistate Hopfield associative memory</title><author>Muezzinoglu, M.K. ; Guzelis, C. ; Zurada, J.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-58712f633f4c875181da6fea9d4af4593feb09700db556665468602ff15ef3e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Associative memory</topic><topic>Computational intelligence</topic><topic>Computer networks</topic><topic>Design methodology</topic><topic>Gray-scale</topic><topic>Integrals</topic><topic>Laboratories</topic><topic>Landscapes</topic><topic>Mathematical analysis</topic><topic>Networks</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Recurrent neural networks</topic><topic>State-space methods</topic><topic>Stores</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Muezzinoglu, M.K.</creatorcontrib><creatorcontrib>Guzelis, C.</creatorcontrib><creatorcontrib>Zurada, J.M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Muezzinoglu, M.K.</au><au>Guzelis, C.</au><au>Zurada, J.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new design method for the complex-valued multistate Hopfield associative memory</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNN</stitle><addtitle>IEEE Trans Neural Netw</addtitle><date>2003-07-01</date><risdate>2003</risdate><volume>14</volume><issue>4</issue><spage>891</spage><epage>899</epage><pages>891-899</pages><issn>1045-9227</issn><issn>2162-237X</issn><eissn>1941-0093</eissn><eissn>2162-2388</eissn><coden>ITNNEP</coden><abstract>A method to store each element of an integral memory set M /spl sub/ {1,2,...,K}/sup n/ as a fixed point into a complex-valued multistate Hopfield network is introduced. The method employs a set of inequalities to render each memory pattern as a strict local minimum of a quadratic energy landscape. Based on the solution of this system, it gives a recurrent network of n multistate neurons with complex and symmetric synaptic weights, which operates on the finite state space {1,2,...,K}/sup n/ to minimize this quadratic functional. Maximum number of integral vectors that can be embedded into the energy landscape of the network by this method is investigated by computer experiments. This paper also enlightens the performance of the proposed method in reconstructing noisy gray-scale images.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>18238068</pmid><doi>10.1109/TNN.2003.813844</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1045-9227
ispartof IEEE transaction on neural networks and learning systems, 2003-07, Vol.14 (4), p.891-899
issn 1045-9227
2162-237X
1941-0093
2162-2388
language eng
recordid cdi_ieee_primary_1215405
source IEEE Electronic Library (IEL)
subjects Associative memory
Computational intelligence
Computer networks
Design methodology
Gray-scale
Integrals
Laboratories
Landscapes
Mathematical analysis
Networks
Neural networks
Neurons
Recurrent neural networks
State-space methods
Stores
Vectors
title A new design method for the complex-valued multistate Hopfield associative memory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A21%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20design%20method%20for%20the%20complex-valued%20multistate%20Hopfield%20associative%20memory&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Muezzinoglu,%20M.K.&rft.date=2003-07-01&rft.volume=14&rft.issue=4&rft.spage=891&rft.epage=899&rft.pages=891-899&rft.issn=1045-9227&rft.eissn=1941-0093&rft.coden=ITNNEP&rft_id=info:doi/10.1109/TNN.2003.813844&rft_dat=%3Cproquest_RIE%3E734249460%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=920869506&rft_id=info:pmid/18238068&rft_ieee_id=1215405&rfr_iscdi=true