A new design method for the complex-valued multistate Hopfield associative memory

A method to store each element of an integral memory set M /spl sub/ {1,2,...,K}/sup n/ as a fixed point into a complex-valued multistate Hopfield network is introduced. The method employs a set of inequalities to render each memory pattern as a strict local minimum of a quadratic energy landscape....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2003-07, Vol.14 (4), p.891-899
Hauptverfasser: Muezzinoglu, M.K., Guzelis, C., Zurada, J.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A method to store each element of an integral memory set M /spl sub/ {1,2,...,K}/sup n/ as a fixed point into a complex-valued multistate Hopfield network is introduced. The method employs a set of inequalities to render each memory pattern as a strict local minimum of a quadratic energy landscape. Based on the solution of this system, it gives a recurrent network of n multistate neurons with complex and symmetric synaptic weights, which operates on the finite state space {1,2,...,K}/sup n/ to minimize this quadratic functional. Maximum number of integral vectors that can be embedded into the energy landscape of the network by this method is investigated by computer experiments. This paper also enlightens the performance of the proposed method in reconstructing noisy gray-scale images.
ISSN:1045-9227
2162-237X
1941-0093
2162-2388
DOI:10.1109/TNN.2003.813844