Autofocusing in medical ultrasound: the scaled covariance matrix algorithm

This work develops a class of ultrasound phase aberration correction/autofocusing algorithms that are based upon the properties of the covariance matrix of the channel signals for time-delay focused resolution/speckle cells. The scaled covariance matrix SCM algorithms are designed to blindly estimat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2003-07, Vol.50 (7), p.795-804
Hauptverfasser: Silverstein, S.D., Ceperley, D.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work develops a class of ultrasound phase aberration correction/autofocusing algorithms that are based upon the properties of the covariance matrix of the channel signals for time-delay focused resolution/speckle cells. The scaled covariance matrix SCM algorithms are designed to blindly estimate and correct focusing timing errors due to thin layers of unanticipated fatty tissue located in the near field of the transducer array. An important aspect of the algorithm is that the scaling of the covariance matrix elements fundamentally establishes a channel independent phase reference relative to which the aberrant channel phases are estimated. The model development involved the combination of a rigorous mathematical analysis of the scattering of ultrasound in random scattering media and extensive statistical simulation studies with phase aberrations imposed upon both the transmit and received channel signals. Under the assumption of a near field aberration model, the statistical simulation analyses showed that the SCM algorithms in simulation are capable of accurately estimating relative time delay channel errors with RMS timing errors up to /spl sim/62 ns, with interchannel correlation lengths as short as 1.4 mm.
ISSN:0885-3010
1525-8955
DOI:10.1109/TUFFC.2003.1214500